Advertisement

Mesodermal Differentiation

  • Nadav Sharon
  • Nissim Benvenisty
Part of the Human Cell Culture book series (HUCC, volume 6)

Keywords

Human Embryonic Stem Cell Embryoid Body Inner Cell Mass Embryonic Stem Cell Line Murine Bone Marrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S.E., Kim, S., Park, K.H., Moon, S.H., Lee, H.J., Kim, G.J., Lee, Y.J., Park, K.H., Cha, K.Y., and Chung, H.M. (2006) Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem. Biophys. Res. Commun., 340: 403–408.PubMedCrossRefGoogle Scholar
  2. Barberi, T., Willis, L.M., Socci, N.D., and Studer, L. (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS. Med., 2: e161.PubMedCrossRefGoogle Scholar
  3. Bielby, R.C., Boccaccini, A.R., Polak, J.M., and Buttery, L.D. (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng., 10: 1518–1525.PubMedGoogle Scholar
  4. Bowles, K.M., Vallier, L., Smith, J.R., Alexander, M.R., and Pedersen, R.A. (2006) HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells, 24: 1359–1369.PubMedCrossRefGoogle Scholar
  5. Cao, T., Heng, B.C., Ye, C.P., Liu, H., Toh, W.S., Robson, P., Li, P., Hong, Y.H., and Stanton, L.W. (2005) Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 days of in vitro culture, and formation of morphologically distinct nodule-like structures. Tissue Cell, 37: 325–334.PubMedCrossRefGoogle Scholar
  6. Carlson, B. (1988) Patten's Foundations of Embryology, 5th edn. McGraw-Hill, New York.Google Scholar
  7. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood, 102: 906–915.PubMedCrossRefGoogle Scholar
  8. Cerdan, C., Rouleau, A., and Bhatia, M. (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood, 103: 2504–2512.PubMedCrossRefGoogle Scholar
  9. Dvash, T., Mayshar, Y., Darr, H., McElhaney, M., Barker, D., Yanuka, O., Kotkow, K.J., Rubin, L.L., Benvenisty, N., and Eiges, R. (2004) Temporal gene expression during differentiation of human embryonic stem cells and embryoid bodies. Hum. Reprod., 19: 2875–2883.PubMedCrossRefGoogle Scholar
  10. Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., and Benvenisty, N. (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol., 11: 514–518.PubMedCrossRefGoogle Scholar
  11. Gaur, M., Kamata, T., Wang, S., Moran, B., Shattil, S.J., and Leavitt, A.D. (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J. Thromb. Haemost., 4: 436–442.PubMedCrossRefGoogle Scholar
  12. Gerecht-Nir, S., Cohen, S., Ziskind, A., and Itskovitz-Eldor, J. (2004a) Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng., 88: 313–320.PubMedCrossRefGoogle Scholar
  13. Gerecht-Nir, S., Dazard, J.E., Golan-Mashiach, M., Osenberg, S., Botvinnik, A., Amariglio, N., Domany, E., Rechavi, G., Givol, D., and Itskovitz-Eldor, J. (2005) Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev. Dyn., 232: 487–497.PubMedCrossRefGoogle Scholar
  14. Gerecht-Nir, S., Osenberg, S., Nevo, O., Ziskind, A., Coleman, R., and Itskovitz-Eldor, J. (2004b) Vascular development in early human embryos and in teratomas derived from human embryonic stem cells. Biol. Reprod., 71: 2029–2036.PubMedCrossRefGoogle Scholar
  15. Gilbert, S. (2000) Developmental Biology, 6th edn. Sinauer Associates, Sunderland, MA.Google Scholar
  16. Goldstein, R.S., Drukker, M., Reubinoff, B.E., and Benvenisty, N. (2002) Integration and differentiation of human embryonic stem cells transplanted to the chick embryo. Dev. Dyn., 225: 80–86.PubMedCrossRefGoogle Scholar
  17. He, J.Q., Ma, Y., Lee, Y., Thomson, J.A., and Kamp, T.J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res., 93: 32–39.PubMedCrossRefGoogle Scholar
  18. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N. (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6: 88–95.PubMedGoogle Scholar
  19. Karp, J.M., Ferreira, L.S., Khademhosseini, A., Kwon, A.H., Yeh, J., and Langer, R. (2005) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells [Epub ahead of print].Google Scholar
  20. Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 98: 10716–10721.PubMedCrossRefGoogle Scholar
  21. Kehat, I., Gepstein, A., Spira, A., Itskovitz-Eldor, J., and Gepstein, L. (2002) High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ. Res., 91: 659–661.PubMedCrossRefGoogle Scholar
  22. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest., 108: 407–414.PubMedGoogle Scholar
  23. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol., 22: 1282–1289.PubMedCrossRefGoogle Scholar
  24. Kim, S.J., Kim, B.S., Ryu, S.W., Yoo, J.H., Oh, J.H., Song, C.H., Kim, S.H., Choi, D.S., Seo, J.H., Choi, C.W., Shin, S.W., Kim, Y.H., and Kim, J.S. (2005) Hematopoietic differentiation of embryoid bodies derived from the human embryonic stem cell line SNUhES3 in co-culture with human bone marrow stromal cells. Yonsei. Med. J., 46: 693–699.PubMedCrossRefGoogle Scholar
  25. Laflamme, M.A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., Muskheli, V., and Murry, C.E. (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol., 167: 663–671.PubMedGoogle Scholar
  26. Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 99: 4391–4396.PubMedCrossRefGoogle Scholar
  27. Levenberg, S., Huang, N.F., Lavik, E., Rogers, A.B., Itskovitz-Eldor, J., and Langer, R. (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. USA, 100: 12741–12746.PubMedCrossRefGoogle Scholar
  28. Lu, S.J., Li, F., Vida, L., and Honig, G.R. (2004) CD34 + CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood, 103: 4134–4141.PubMedCrossRefGoogle Scholar
  29. Mossman, A.K., Sourris, K., Ng, E., Stanley, E.G., and Elefanty, A.G. (2005) Mixl1 and oct4 proteins are transiently co-expressed in differentiating mouse and human embryonic stem cells. Stem Cells Dev., 14: 656–663.PubMedCrossRefGoogle Scholar
  30. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., Passier, R., and Tertoolen, L. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 107: 2733–2740.PubMedCrossRefGoogle Scholar
  31. Narayan, A.D., Chase, J.L., Lewis, R.L., Tian, X., Kaufman, D.S., Thomson, J.A., and Zanjani, E.D. (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood, 107: 2180–2183.PubMedCrossRefGoogle Scholar
  32. Passier, R., Oostwaard, D.W., Snapper, J., Kloots, J., Hassink, R.J., Kuijk, E., Roelen, B., de la Riviere, A.B., and Mummery, C. (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23: 772–780.PubMedCrossRefGoogle Scholar
  33. Qiu, C., Hanson, E., Olivier, E., Inada, M., Kaufman, D.S., Gupta, S., and Bouhassira, E.E. (2005) Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol., 33: 1450–1458.PubMedCrossRefGoogle Scholar
  34. Satin, J., Kehat, I., Caspi, O., Huber, I., Arbel, G., Itzhaki, I., Magyar, J., Schroder, E.A., Perlman, I., and Gepstein, L. (2004) Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes. J. Physiol., 559: 479–496.PubMedCrossRefGoogle Scholar
  35. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 97: 11307–11312.PubMedCrossRefGoogle Scholar
  36. Segev, H., Kenyagin-Karsenti, D., Fishman, B., Gerecht-Nir, S., Ziskind, A., Amit, M., Coleman, R., and Itskovitz-Eldor, J. (2005) Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Dev. Growth Differ., 47: 295–306.PubMedCrossRefGoogle Scholar
  37. Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 285: H2355–H2363.PubMedGoogle Scholar
  38. Sottile, V., Thomson, A., and McWhir, J. (2003) In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells, 5: 149–155.PubMedCrossRefGoogle Scholar
  39. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998) Embryonic stem cell lines derived from human blastocysts. Science, 282: 1145–1147.PubMedCrossRefGoogle Scholar
  40. Tian, X., Morris, J.K., Linehan, J.L., and Kaufman, D.S. (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp. Hematol., 32: 1000–1009.PubMedCrossRefGoogle Scholar
  41. Tian, X., Woll, P.S., Morris, J.K., Linehan, J.L., and Kaufman, D.S. (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells, 24: 1370–1380.PubMedCrossRefGoogle Scholar
  42. Tzukerman, M., Rosenberg, T., Ravel, Y., Reiter, I., Coleman, R., and Skorecki, K. (2003) An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 100: 13507–13512.PubMedCrossRefGoogle Scholar
  43. Vodyanik, M.A., Bork, J.A., Thomson, J.A., and Slukvin, II. (2005) Human embryonic stem cell-derived CD34 + cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105: 617–626.PubMedCrossRefGoogle Scholar
  44. Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., and Bhatia, M. (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21: 31–41.PubMedCrossRefGoogle Scholar
  45. Wang, J., Zhao, H.P., Lin, G., Xie, C.Q., Nie, D.S., Wang, Q.R., and Lu, G.X. (2005a) In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines. Cell Biol. Int., 29: 654–661.PubMedCrossRefGoogle Scholar
  46. Wang, L., Menendez, P., Shojaei, F., Li, L., Mazurier, F., Dick, J.E., Cerdan, C., Levac, K., and Bhatia, M. (2005b) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med., 201: 1603–1614.PubMedCrossRefGoogle Scholar
  47. Woll, P.S., Martin, C.H., Miller, J.S., and Kaufman, D.S. (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol., 175: 5095–5103.PubMedGoogle Scholar
  48. Xiong, C., Xie, C.Q., Zhang, L., Zhang, J., Xu, K., Fu, M., Thompson, W.E., Yang, L.J., and Chen, Y.E. (2005) Derivation of adipocytes from human embryonic stem cells. Stem Cells Dev., 14: 671–675.PubMedCrossRefGoogle Scholar
  49. Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol., 19: 971–974.PubMedCrossRefGoogle Scholar
  50. Xu, C., Police, S., Rao, N., and Carpenter, M.K. (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res., 91: 501–508.PubMedCrossRefGoogle Scholar
  51. Xue, T., Cho, H.C., Akar, F.G., Tsang, S.Y., Jones, S.P., Marban, E., Tomaselli, G.F., and Li, R.A. (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111: 11–20.PubMedCrossRefGoogle Scholar
  52. Zambidis, E.T., Peault, B., Park, T.S., Bunz, F., and Civin, C.I. (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106: 860–870.PubMedCrossRefGoogle Scholar
  53. Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., and Cheng, L. (2004) Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, 364: 163–171.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Nadav Sharon
    • 1
  • Nissim Benvenisty
    • 2
  1. 1.Department of Genetics, Institute of Life SciencesThe Hebrew UniversityIsrael
  2. 2.Department of Genetics, Institute of Life SciencesThe Hebrew UniversityJerusalemIsrael

Personalised recommendations