Micromechanics of Particle Adhesion

  • Jürgen Tomas
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1)

Summary

The rapid increasing production of cohesive to very cohesive ultra- fine powders (d < 10 µm), e.g. very adhering pigment particles, micro-carriers in medicine, auxiliary materials in catalysis make technical problems much serious like undesired adhesion in particle processing, powder handling, and desired, in agglomeration or coating. Thus, it is very essential to understand the fundamentals of particle adhesion with respect to product quality assessment and process performance in powder technology. The state of arts in modelling of elastic, elastic-adhesion, elastic-dissipative, plastic-adhesion and plastic-dissipative contact deformation response of a single, normal loaded, isotropic contact of two smooth spheres is briefly discussed. Then the force-displacement behaviour of elastic-plastic and adhesive contacts is shown. Using the model “stiff particles with soft contacts”, the combined influence of elastic and elastic-plastic repulsions in a characteristic particle contact is demonstrated. A sphere-sphere model for van der Waals forces F H0 without any contact deformation describes the “stiff” attractive particle adhesion term. A plate-plate model is used to calculate the micro-contact flattening or overlap. Various contact deformation paths for loading, unloading, reloading and contact detachment are discussed. Thus, the varying adhesion forces between particles depend directly on this “frozen” irreversible deformation, the so-called contact pre-consolidation history. The adhesion force is found to be load dependent F H(F N). The contribution of this history dependent adhesion on the tangential force in an elastic-plastic frictional contact F T (F N, F H(F N)), the rolling resistance F R(F N, F H(F N)) and the torque of mobilized frictional contact rotation M to(F N, F H(F N)) are shown. With this increasing load, normal and tangential contact stiffness, energy absorption, Coulomb friction limit and friction work increase.These constitutive models are generally applicable for solid micro- or nanocontacts but have been shown here for an ultrafine limestone powder (d 50 = 1.2µm).

Keywords

Torque Catalysis Lime Compaction Agglomeration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Molerus O (1975) Powder Technol 12:259–275CrossRefGoogle Scholar
  2. 2.
    Molerus O (1978) Powder Technol 20:161–175CrossRefGoogle Scholar
  3. 3.
    Tomas J (1983) Ph.D. Thesis, Freiberger Forschungshefte A677:1–133Google Scholar
  4. 4.
    Tomas J (1991) Habilitation. Sc.D. Thesis, Bergakademie FreibergGoogle Scholar
  5. 5.
    Cundall PA, Strack OLD (1979) Geotechnique 29:47–65CrossRefGoogle Scholar
  6. 6.
    Rumpf H (1974) Chem Ing Tech 46:1–11CrossRefGoogle Scholar
  7. 7.
    Schubert H (1979) Chem Ing Tech 51:266–277CrossRefGoogle Scholar
  8. 8.
    Krupp H (1967) Adv Colloid Interface Sci 1:111–239CrossRefGoogle Scholar
  9. 9.
    Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, LondonGoogle Scholar
  10. 10.
    Maugis D (1999) Contact, Adhesion and Rupture of Elastic Solids. Springer, BerlinGoogle Scholar
  11. 11.
    Kendall K (2001) Molecular Adhesion and its Application. Kluwer Academic/Plenum Publ, New YorkGoogle Scholar
  12. 12.
    Johnson KL (1985) Contact Mechanics. Cambridge University Press, CambridgeMATHGoogle Scholar
  13. 13.
    Stronge WJ (2000) Impact mechanics. Cambridge University Press, CambridgeMATHGoogle Scholar
  14. 14.
    Hertz H (1882) J reine u angewandte Math 92:156–171CrossRefGoogle Scholar
  15. 15.
    Yang WH (1966) ASME J Appl Mech 33:395–401Google Scholar
  16. 16.
    Johnson KL, Kendall K, Roberts AD (1971) Proc Roy Soc Lond A324:301–313Google Scholar
  17. 17.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53:314–326CrossRefGoogle Scholar
  18. 18.
    Stieß M (1976) Ph.D.Thesis. TH KarlsruheGoogle Scholar
  19. 19.
    Walton OR, Braun R.L. (1986) J Rheology 30:949–980CrossRefGoogle Scholar
  20. 20.
    Thorton C, Ning Z (1998) Powder Technol 99:154–162CrossRefGoogle Scholar
  21. 21.
    Schubert H, Sommer K, Rumpf H (1976) Chem Ing Techn 716Google Scholar
  22. 22.
    Vu-Quoc L, Zhang X (1999) Proc R Soc Lond A 455:4013–4044MATHCrossRefGoogle Scholar
  23. 23.
    Kuwabara C, Kono K (1987) Jap J Appl Phys 26:1230–1233CrossRefGoogle Scholar
  24. 24.
    Sadd MH, Tai Q, Shukla A (1993) Int J Non-Linear Mechanics 28:251–265MATHCrossRefGoogle Scholar
  25. 25.
    Rumpf H, Sommer K, Steier K (1976) Chem Ing Techn 48:300–307CrossRefGoogle Scholar
  26. 26.
    Luding S, Manetsberger K, Müller J (2005) J Mech Physics of Solids 53:455–491MATHCrossRefGoogle Scholar
  27. 27.
    Tomas J (2003) Particulate Sci Technol 19:95–110, 111–129CrossRefGoogle Scholar
  28. 28.
    Tomas J (2003) Mechanics of nanoparticle adhesion-a continuum approach, In: Mittal KL (ed) Particles on Surfaces 8: Detection, Adhesion and Removal, VSB UtrechtGoogle Scholar
  29. 29.
    Tomas J (2004) Chem Eng Technol 27:605–618CrossRefGoogle Scholar
  30. 30.
    Tomas J (2004) Granular Matter 5:75–86CrossRefGoogle Scholar
  31. 31.
    Dahnecke B (1972) J Colloid Interface Sci 40:1–13CrossRefGoogle Scholar
  32. 32.
    Maugis D, Pollock, HM (1984) Acta Metall 32:1323–1334CrossRefGoogle Scholar
  33. 33.
    Castellanos A (2006) Advances in Physics 1–143 (manuscript)Google Scholar
  34. 34.
    Fromm G (1927) Zeitschr Angew Math Mech 7:27–58CrossRefMATHGoogle Scholar
  35. 35.
    Cattaneo C (1938) Academia Nationale dei Lincei. Rendiconti. Serie 6. 27:342–348 434–436 474–478MATHGoogle Scholar
  36. 36.
    Föppl L (1947) Die strenge Lösung für die rollende Reibung. Leibnitz Verlag. MünchenMATHGoogle Scholar
  37. 37.
    Sonntag G (1950) Zeitschr Angew Math Mech 30:73–83MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Mindlin RD (1949) Trans ASME J Appl Mech 16:259–267MATHMathSciNetGoogle Scholar
  39. 39.
    Mindlin RD, Deresiewicz H (1953) Trans ASME J Appl Mech 20:327–344MATHMathSciNetGoogle Scholar
  40. 40.
    Thornton C (1991) J Phys D: Appl Phys 24:1942–1946CrossRefGoogle Scholar
  41. 41.
    Renzo Di A, Maio Di FP (2004) Chem Engng Sci 59:525–541CrossRefGoogle Scholar
  42. 42.
    Cattaneo C (1952) Ann Scuola Norm Sup Pisa (Serie III) 6:1–16MATHMathSciNetGoogle Scholar
  43. 43.
    Deresiewicz H (1954) ASME J Appl Mech 21:52–56MATHGoogle Scholar
  44. 44.
    Antonyuk S, Tomas J, Heinrich S, Mörl L (2005) Chem Eng Sci 60:4031–4044CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jürgen Tomas
    • 1
  1. 1.Mechanical Process EngineeringThe Otto-von-Guericke-UniversityMagdeburgGermany

Personalised recommendations