• David Bourell
  • Kamlakar Rajurkar


Materials play an important role in manufactured goods. Materials must possess both acceptable properties for their intended applications and a suitable ability to be manufactured. These criteria hold true for micromanufacturing, in which parts have overall dimensions of less than 1 mm. This chapter begins by reviewing materials usage in Asian and European research in micromanufacturing, categorized by manufacturing process. Following that, specific treatment is given to materials factors that are unique to micromanufacturing.


Tungsten Carbide Computer Numerical Control Ductile Cast Iron Vanadium Carbide Microlens Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardes, B. P. ed. Metals Handbook: Ninth Edition. 1979. Volume 2, 285 in Properties and Selection: Nonferrous Alloys and Pure Metals, (Bruce P. Bardes, Ed.), American Society of Metals, 1979.Google Scholar
  2. Chang, H., C. J. Altstetter, R. S. Averbach. 1995. Nanophase Metals—Processing and Properties. In Advanced Materials and Processing, vol. 3, K.S. Shin, et al., eds, Kyongju, Korea: Korean Institute of Metals and Materials, 2107.Google Scholar
  3. Chokshi, A. H., A. Rosen, J. Karch, H. Gleiter. 1989. On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials. Scripta Metall 23, 1679–1684.CrossRefGoogle Scholar
  4. Croat, J. J. 1982. Permanent Magnet Properties of Rapidly Quenched Rare Earth-Iron Alloys. IEEE Trans Magn 18, 1442–1447.CrossRefGoogle Scholar
  5. Eastman, J. A., L. J. Thompson, B. J. Kestel. 1993. Narrowing of the Palladium-Hydrogen Miscibility Gap in Nanocrystalline Palladium. Phys Rev B 48, 84–92.CrossRefGoogle Scholar
  6. Ganqvist, C. G., G. J. Milanowski, R.A. Buhrman. 1975. A15-Type Structure of Chromium Films and Particles. Physics Letters 54A, 245–246.Google Scholar
  7. Herzer, G. 1991. Materials Science and Engineering A 133, 1–5.CrossRefMathSciNetGoogle Scholar
  8. Koon, N. C. and B. N. Das. 1981. Magnetic-Properties of Amorphous and Crystallized (Fe0.82B0.18)0.9Tb0.05LaO0.05. Applied Physics Letters 39, 840–842.CrossRefGoogle Scholar
  9. Kimoto, K. and I. Nishida. 1967. An Electron Microscope and Electron Diffraction Study of Fine Smoke Particles Prepared by Evaporation in Argon Gas at Low Pressures II. Applied Physics 6, 1047–1059.Google Scholar
  10. Malow, T. R. and C. C. Koch. 1996. Grain Growth of Nanocrystalline Materials—A Review, 33–46. In Synthesis and Processing of Nanocrystalline Powder, D. L. Bourell, ed., Warrendale PA: TMS.Google Scholar
  11. Mütschele, T., R. Kirchheim. 1987. Hydrogen as a Probe for the Average Thickness of a Grain Boundary. Scripta Metallurgica 21, 1101–1104.CrossRefGoogle Scholar
  12. Nieh, T. G. and J. Wadsworth. 1989. Characterization of Superplastic Yttria-Stabilized Tetragonal Zirconia by a Hot Indentation technique. Scripta Metallurgica 23, 1261–1264.CrossRefGoogle Scholar
  13. Nye, J.F. 1985. Physical Properties of Crystals, Oxford: Clarendon Press.Google Scholar
  14. Padmanabhan, K. A. and H. Hahn. 1996. Microstructures, Mechanical Properties and Possible Applications of Nanostructured Materials, 21–32. In Synthesis and Processing of Nanocrystalline Powder, D.L. Bourell, ed., Warrendale, PA: TMS.Google Scholar
  15. Saito, Y., K. Mihama, R. Uyeda. 1980. Formation of Ultrafine Metal Particles by Gas-Evaporation. 6. BCC Metals Fe, V, Nb, Ta, Cr, Mo and W. J Applied Physics 19, 1603–1610.Google Scholar
  16. Schumacher, S., R. Birringer, R. Strauss, H. Gleiter. 1989. Diffusion of Silver in Nanocrystalline Copper Between 303 and 373K. Acta Metallurgica 37, 2485–2488.CrossRefGoogle Scholar
  17. Skandan, G., H. Hahn, M. Roddy, W. Cannon. 1994. Ultrafine-Grained Dense Monoclinic and Tetragonal Zirconia. J American Ceramics Society 77, 1706–1710.CrossRefGoogle Scholar
  18. Soma, T., M. Matsui, I. Oda. 1986. Tensile strength of a sintered silicon nitride, 361–374. In Non-Oxide Technical and Engineering Ceramics, S. Hampshire, ed., New York: Elsevier.Google Scholar
  19. Stuhr, U. H. Wipf, T. J. Udovic, J. Weissmüller, H. Gleiter. 1995. Inelastic Neutron Scattering Study of Hydrogen in Nanocrystalline Pd. Nano Structured Materials 6, 555–558.CrossRefGoogle Scholar
  20. Tsai, M.-C. and Y.-A. Chen. 2004. Size effects in micro-metal forming. In MIRDC Government Annual Report, 18–27 (2004) [in Chinese].Google Scholar
  21. Tsai, M.-C., Y.-A. Chen, C.-F. Wu, F.-K. Chen. 2004. Size effect in micro-metal forming of copper and brass. Forging, 13:2, 41–46 [in Chinese with English abstract].Google Scholar
  22. Tsai, M.-C. 2004. Cu15Zn microstructure effects on micro-metal forming. MIRDC Government Annual Report [in Chinese].Google Scholar
  23. Wakai, F. and H. Kato. 1988. Adv Ceramic Materials 3, 71.Google Scholar
  24. Weissmüller, J. 1996. Nanocrystalline Materials—An Overview, 3–20. In Synthesis and Processing of Nanocrystalline Powder, D.L. Bourell, ed., Warrendale PA: TMS.Google Scholar
  25. Weissmüller, J., J. Löffler, M. Kleber. 1995. Nanostructured Materials 6, 105–114.CrossRefGoogle Scholar
  26. Yoshizawa, Y., S. Oguma, K. Yamauchi. 1988. New Fe-Based Soft Magnetic-Alloys Composed of Ultrafine Grain-Structure. J Applied Physics 64, 6044–6046.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David Bourell
  • Kamlakar Rajurkar

There are no affiliations available

Personalised recommendations