Advertisement

Mechanism of Action of Opioids and Clinical Effects

  • Enno Freye
  • Joseph Victor Levy

Keywords

Opioid Receptor Respiratory Depression Opioid Analgesic Opium Poppy Analgesic Potency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhawan, B.N., et al., International union of pharmacology. XII. Classification of opioid receptors. Pharmacol Rev, 1996, 48: pp. 567–592.PubMedGoogle Scholar
  2. 2.
    Ling, G.S.F., et al., Separation of opioid analgesia from respiratory depression: evidence of different receptor mechanism. J Pharmacol Exp Ther, 1985, 232: pp. 149–155.PubMedGoogle Scholar
  3. 3.
    Della Bella, D., F. Casacci, and A. Sassi, Opiate receptors: different ligand affinity in various brain regions. Adv Biochem Psychopharmacol, 1978, 18: pp. 271–277.PubMedGoogle Scholar
  4. 4.
    Pan, Y.X., et al., Identification and characterization of three new alternative spliced mu-opioid receptors. Mol Pharmacol, 1999, 56: pp. 396–403.PubMedGoogle Scholar
  5. 5.
    Martin, W.R., et al., The effects of morphine and nalorphine-like drugs in the non-dependant and morphine-dependant chronic spinal dog. J Pharmacol Exp Ther, 1976, 197: pp. 517–532.PubMedGoogle Scholar
  6. 6.
    Gorman, A.L., K.J. Elliott, and C.E. Inturrisi, The D- and the L-isomers of methadone bind to the non-competitive site on the NMDA receptor in the rat forebrain and spinal cord. Neurosci Lett, 1997, 223: pp. 5–8.PubMedGoogle Scholar
  7. 7.
    Quiding, H., et al., Plasma concentrations of codeine and its metabolite morphine, after single and repeated oral administration. Eur J Clin Pharmacol, 1986, 30: pp. 673–677.PubMedGoogle Scholar
  8. 8.
    Rossi, G.C., et al., Novel receptor mechanisms for heroin and morphine-6β-glucoronide analgesia. Neurosci Lett, 1996, 216: pp. 1–4.PubMedGoogle Scholar
  9. 9.
    Ross, F.B. and M.T. Smith, The intrinsic antinociceptive effects of oxycodone appear to be k-opioid receptor mediated. Pain, 1997, 73: pp. 151–157.PubMedGoogle Scholar
  10. 10.
    Ebert, B., S. Andersen, and P. Krogsgrad-Karsen, Ketobemidone, methadone and pethidine are non-comptitve N-methyl-D-aspartate (NMDA) antagonists in the rat cortex and spinal cord. Neurosci Lett, 1995, 187: pp. 165–168.PubMedGoogle Scholar
  11. 11.
    Magnan, J., et al., The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn-Schmiedebergs Arch Pharmacol, 1982, 319: pp. 197–205.PubMedGoogle Scholar
  12. 12.
    Corbett, D., S.J. Paterson, and H.W. Kosterlitz, Selectivity of ligands for opioid receptors, in Opioids I. Handbook of Experimental Pharmacology, A. Herz, Editor, 1993, Springer: Berlin, Heidelberg, New York. pp. 645–680.Google Scholar
  13. 13.
    Schmidt, W.K., et al., Nalbuphine. Drug Alcohol Depend, 1985. 14: pp. 339–362.PubMedGoogle Scholar
  14. 14.
    Meert, T.F., et al., Comparison between epidural fentanyl, sufentanil, carfentanil, lofentanil and alfentanil in rats: analgesia and other in vivo effects. Eur J Aneasth, 1988, 5: pp. 313–321.Google Scholar
  15. 15.
    Kögel, B., et al., Interaction of μ-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Eur J Pain, 2005, 9: pp. 599–611.PubMedGoogle Scholar
  16. 16.
    Engelberger, T., et al., In vitro and ex vivo reversibility of the opioid receptor binding of buprenorphine, in Pain in Europe IV, 2003, Prague, European Federation of the International Association for the Study of Pain Chapters: Czek Republik.Google Scholar
  17. 17.
    Pert, P.B. and S.H. Snyder, Opiate receptor: demonstration in nervous tissue. Science, 1973, 179: pp. 1011–1014.PubMedGoogle Scholar
  18. 18.
    Wood, P.L., Multiple opiate receptors: support for unique mu, delta and kappa sites. Neuropharmacology, 1982, 21: pp. 487–497.PubMedGoogle Scholar
  19. 19.
    Foote, R.W. and R. Maurer, Autoradiographic localization of opiate k-receptors in the guinea pig brain. Eur J Pharmacol, 1982, 85: pp. 99–103.PubMedGoogle Scholar
  20. 20.
    Goodman, R.R. and S.H. Snyder, Autoradiographic localization of kappa opiate receptors to deep layers of the cerebral cortex may explain unique sedative and analgesic effects. Life Sci, 1982, 31: pp. 1291–1294.PubMedGoogle Scholar
  21. 21.
    Kosterlitz, H.W. and S.J. Paterson, Characterization of opioid receptors in nervous tissue. Proc R Soc Lond, 1980, 210: pp. 113–122.Google Scholar
  22. 22.
    Dahan, A., et al., Buprenorphine causes ceiling effect in respiratory depression but not in analgesic effect. Anesthesiology, 2003, 99: p. A1530.Google Scholar
  23. 23.
    Walsh, S.L. and T. Eissenberg, The clinical pharmacology of buprenorphine: extrapolating from the laboratory to the clinic. Drug Alcohol Depend, 2003, 70: pp. S13–S27.PubMedGoogle Scholar
  24. 24.
    Walsh, S.L., K.L. Preston, and M.L. Stitzer, Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther, 1994, 55: pp. 569–580.PubMedGoogle Scholar
  25. 25.
    Terenius, L., Specific uptake of narcotic analgesics by subcellular fractions of the guinea pig ileum. Acta Pharmacol Toxicol, 1972, 31: p. 50.Google Scholar
  26. 26.
    Kosterlitz, H.W. and A.A. Waterfield, In vitro models in the study of structure-activity relationships of narcotic analgesics. Ann Rev Pharmacol, 1975, 15: pp. 29–47.PubMedGoogle Scholar
  27. 27.
    Hassler, R., Über die antagonistischen Systeme der Schmerzempfindung und des Schmerzgefühls im peripheren und zentralen Nervensystem, in Pentazocin im Spiegel de Entwöhnung, S. Kubicki and G.A. Neuhaus, Editors, 1976, Springer: Berlin, Heidelberg, New York. pp. 1–17.Google Scholar
  28. 28.
    Simantov, R., A.M. Snowman, and S.H. Snyder, A morphine-like factor “enkephalin” in rat brain: subcellular localization. Brain Res, 1976, 107: pp. 650–655.PubMedGoogle Scholar
  29. 29.
    Hong, J.S., et al., Determination of methionine enkephalin in discrete regions of rat brain. Brain Res, 1977, 134: p. 383.PubMedGoogle Scholar
  30. 30.
    Melzack, R. and P.C. Wall, Pain mechanisms: a new theory. Science, 1965, 150: p. 971.PubMedGoogle Scholar
  31. 31.
    Snyder, S.H., D.C. U’Prichard, and D.A. Greenberg, Neurotransmitter receptor binding in the brain, in Psychopharmacology: A Generation of Progress, M.A. Lipton, A. DiMascio, and K.F. Killam, Editors, 1978, Raven: New York. pp. 361–370.Google Scholar
  32. 32.
    Pazos, A. and J. Florez, Interaction of naloxone with mu- and delta-opioid agonists on respiration of rats. Eur J Pharmacol, 1983, 87: pp. 309–314.PubMedGoogle Scholar
  33. 33.
    Leysen, J.E., W. Gommeren, and C.J.E. Niemegeers, 3H-sufentanil, a superior ligand for the mu-opiate receptor: binding properties and regional distribution in rat brain and spinal cord. Eur J Pharmacol, 1983, 87: pp. 209–225.PubMedGoogle Scholar
  34. 34.
    Niemegeers, C.J.E. and P.A.J. Janssen, Alfentanil (R 39 209) – a particularly short-acting narcotic analgesic in rats. Drug Dev Res, 1981, 1: pp. 83–88.Google Scholar
  35. 35.
    Van Bever, W.F.M., et al., N-4-substituted 1-(2arylethyl)-4-piperidinyl-N-phenylpropanamides, a novel series of extremely potenet analgesics with unusually high safety margin. Drug Res/Arzneimittelforsch, 1978, 26: pp. 1548–1551.Google Scholar
  36. 36.
    Woolf, C.J. and R.J. Mannion, Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet, 1999, 353: pp. 1959–1964.PubMedGoogle Scholar
  37. 37.
    Pilowsky, J., Current views on the role of psychiatrists in the management of the chronic pain, in The Therapy of Pain, N. Swerdlow, Editor, 1981, MTI Press: Lancaster.Google Scholar
  38. 38.
    Pinsky, J.J., Psychodynamics and psychotherapy in the treatment of patients with chronic pain, in Chronic Pain, B.L. Crue, Editor, 1978, Spectrum: New York.Google Scholar
  39. 39.
    Ngai, S.H., The effects of morphine and meperidine on the central respiratory mechanisms in the cat: the action of levallorphan in antagonizing these effects. J Pharmacol Exp Ther, 1961, 131: pp. 91–102.PubMedGoogle Scholar
  40. 40.
    Florez, J. and A. Mediavilla, Respiratory and cardiovascular effects of met-enkephalin applied to the ventral surface of the brain stem. Brain Res, 1978, 138: pp. 585–590.Google Scholar
  41. 41.
    Freye, E. and E. Hartung, Fentanyl in the fourth cerebral ventricle causes respiratory depression in the anesthetized but not in the awake dog. Acta Anesthesiol Scand, 1981, 25: pp. 171–173.Google Scholar
  42. 42.
    Ngai, S.H., et al., Pharmacokinetics of naloxone in rats and man. Basis for its potency and short duration of action. Anesthesiology, 1976, 44: p. 44.Google Scholar
  43. 43.
    Freye, E., E. Hartung, and S. Kalibe, Prevention of late fentanyl-induced respiratory depression after the injection of the opiate antagonists naltrexone and S-20682 as compared to naloxone. Br J Anaesth, 1983, 55: pp. 71–77.PubMedGoogle Scholar
  44. 44.
    Stoeckel, H., J.H. Hengstmann, and J. Schüttler, Pharmacokinetics of fentanyl as a possible explanation for recurrence of respiratory depression. Br J Anaesth, 1979, 51: p. 741.PubMedGoogle Scholar
  45. 45.
    Houde, R.W., Analgesic effectiveness of the narcotic agonist-antagonists. Brit J Clin Pharmacol, 1979, 7: pp. 297S–308S.Google Scholar
  46. 46.
    Freye, E., Opioid agonists, antagonists and mixed narcotic analgesics: their use in postoperative and chronic pain management. Drugs of Today, 1989, 25: pp. 741–754.Google Scholar
  47. 47.
    Magruder, M.R., R.D. DeLaney, and C.A. DiFazio, Reversal of narcotic-induced respiratory depression with nalbuphine hydrochloride. Anesthesiol Rev, 1982, 9: pp. 34–37.Google Scholar
  48. 48.
    Freye, E., L. Azevedo, and E. Hartung, Reversal of fentanyl-related respiratory depression with nalbuphine; effects on the CO2-response curve of man. Acta Anaesth Belg, 1985, 36: pp. 365–374.PubMedGoogle Scholar
  49. 49.
    Bailey, P.L., et al., Antagonism of postoperative opioid-induced respiratory depression: nalbuphine versus naloxone. Anesth Analg, 1987, 66: pp. 1109–1114.PubMedGoogle Scholar
  50. 50.
    Freye, E., E. Hartung, and M. Segeth, Nalbuphine reverses fentanyl-related EEG changes in man. Acta Anaesth Belg, 1984, 35: pp. 25–36.PubMedGoogle Scholar
  51. 51.
    Gal, T.J. and C.A. DiFazio, Prolonged antagonism of opioid action with intravenous nalmefene in man. Anesthesiology, 1986, 64: pp. 175–180.PubMedGoogle Scholar
  52. 52.
    Moore, L.R., et al., Antagonism of fentanyl-induced respiratory depression with nalmefene. Meth Find Expt Clin Pharmacol, 1990, 12(1): pp. 29–35.Google Scholar
  53. 53.
    Smith, T.W., et al., Enkephalins: isolation, distribution and function, in Opiates and Endogenous Opioid Peptides, 1976, Elsevier: Amsterdam.Google Scholar
  54. 54.
    Yeadon, M. and I. Kitchen, Multiple opioid receptors mediate the respiratory depressant effect of fentanyl-like drugs in the rat. Gen Pharmac, 1990, 21: pp. 655–664.Google Scholar
  55. 55.
    Pasternak, G.W. and P.J. Wood, Minireview: multiple mu opiate receptors. Life Sci, 1986, 38: pp. 1889–1898.PubMedGoogle Scholar
  56. 56.
    Pasternak, G.W., Multiple morphine and enkephalin receptors and the relief of pain. JAMA, 1988, 259: pp. 1362–1367.PubMedGoogle Scholar
  57. 57.
    Bailey, P.L., et al., Differences in magnitude and duration of opioid induced respiratory depression and analgesia with fentanyl and sufentanil. Anesth Analg, 1990, 70: pp. 8–15.PubMedGoogle Scholar
  58. 58.
    Vaught, J.L., R.B. Rothman, and T.C. Westfall, Mu and delta receptors: their role in analgesia and in the differential effects of opioid peptides on analgesia. Life Sci, 1982, 30: pp. 1443–1455.PubMedGoogle Scholar
  59. 59.
    Freye, E., M. Schnitzler, and G. Schenk, Opioid-induced respiratory depression and analgesia may be mediated by different subreceptors. Pharm Res, 1991, 8: pp. 196–199.PubMedGoogle Scholar
  60. 60.
    Freye, E., L. Latasch, and P.S. Portoghese, The delta receptor is envolved in sufentanil-induced respiratory depression. Eur J Anaesthesiol, 1992, 9: pp. 457–462.PubMedGoogle Scholar
  61. 61.
    He, L. and N. Lee, Delta opid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J Pharmacol Expt Ther, 1998, 285: pp. 1181–1186.Google Scholar
  62. 62.
    Egan, T.D., et al., The pharmacokinetics and pharmacodynamics of GI87084B. Anesthesiology, 1992, 77(3A): p. A369.Google Scholar
  63. 63.
    Hughes, M.A., P.S.A. Glass, and J.R. Jacobs, Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology, 1992, 76: pp. 334–341.PubMedGoogle Scholar
  64. 64.
    Fink, B.R., Influence of cerebral activity in wakefulness on regulation of breathing. J Appl Physiol, 1961, 16: pp. 15–23.PubMedGoogle Scholar
  65. 65.
    Sullivan, C.E., et al., Waking and ventilatory responses to laryngeal stimulation in sleeping dogs. J Appl Physiol, 1978, 45: pp. 681–688.PubMedGoogle Scholar
  66. 66.
    Latasch, L. and R. Christ, Respiratory safety, in Transdermal Fentanyl, K. Lehmann and D. Zech, Editors, 1991, Springer: Berlin, Heidelberg, New York, Tokyo. pp. 149–157.Google Scholar
  67. 67.
    De Castro, J., Association des analgésiques centraux et des neuroleptiques en cours d’intervention, in Les analgésiques et la douleur. Influences pharmacologiques diverses exercées sur morphiniques, G. Vourch, et al., Editors, 1971, Masson: Paris. pp. 185–194, 383–403.Google Scholar
  68. 68.
    Maurer, P.M. and R.R. Bartkowski, Drug interactions of clinical significance with opioid analgesics. Drug Safety, 1993, 8: pp. 30–48.PubMedGoogle Scholar
  69. 69.
    Sifton, D.W., Drug interaction and side effects index™, in 42 ed. Physicians Desk Reference (PDR), M. Trelewicz, Editor, 1988, Medical Economics Company Inc: Oradell, New York pp. 1–787.Google Scholar
  70. 70.
    Lehmann, K.A., et al., Biotransformation von fentanyl. II. Akute Arzneimittelinteraktion – Untersuchungen bei Ratte und Mensch. Anaesthesist, 1982, 31: pp. 221–227.PubMedGoogle Scholar
  71. 71.
    Harper, M.H., et al., The magnitude and the duration of respiratory depression produced by fentanyl and fentanyl plus droperidol in man. J Pharmacol Exp Ther, 1976, 199: pp. 464–455.PubMedGoogle Scholar
  72. 72.
    Becker, C.E., et al., A quick guide to common drug interaction, in Patient Care, J. Bigelow, Editor, 1974, Miller & Fink: Philadelphia. pp. 1–32.Google Scholar
  73. 73.
    Gibaldi, M. and D. Perrier, Pharmacokinetics, 1975, Marcel Dekker: New York.Google Scholar
  74. 74.
    Elstrom, J., Plasma protein binding of phenytoin after cholecystectomy and neurosurgical operations. Acta neur scand, 1977, 55: p. 455.Google Scholar
  75. 75.
    MacClain, D.A. and C.C.J. Hug, Intravenous fentanyl kinetics. Clin Pharmacol Ther, 1980, 28: p. 106.Google Scholar
  76. 76.
    Olson, G.D., W.M. Bennett, and G.A. Porter, Morphine and phenytoin binding to human plasma protein in renal and hepatic failure. Clin Pharmacol Ther, 1975, 17: p. 677.Google Scholar
  77. 77.
    Corall, I.M., A.R. Moore, and L. Strunin, Plasma concentrations of fentanyl in normal surgical patients and those with severe renal and hepatic disease. Br J Anaesth, 1980, 52: p. 101.Google Scholar
  78. 78.
    Ekman, A., et al., Reduction in the incidence of awareness using BIS monitoring. Acta Anaesth Scand, 2004, 48: pp. 20–26.PubMedGoogle Scholar
  79. 79.
    Römer, D., et al., Bremazocine: a potent, long-acting opiate kappa-agonist. Life Sci, 1980, 27: pp. 971–978.PubMedGoogle Scholar
  80. 80.
    Freye, E., E. Hartung, and G.K. Schenk, Tifluadom (KC-5103) induces suppression and latency changes of somatosensory-evoked potentials which are reversed by opioid antagonists. Life Sci, 1983, 33: pp. 537–540.PubMedGoogle Scholar
  81. 81.
    Freye, E., E. Hartung, and G.K. Schenk, Bremazocine: an opiate which induces sedation and analgesia but no respiratory depression. Anesth Analg, 1983, 62: pp. 483–488.PubMedGoogle Scholar
  82. 82.
    Wevers, A., et al., Cellular distribution of the mRNA for the k-opiod receptor in the human neocortex: a non-isotopic in situ hybridization study. Neurosci Let, 1995, 195: pp. 1–4.Google Scholar
  83. 83.
    Pfeiffer, A., et al., Opiate receptor binding sites in human brain. Brain Res, 1982, 248: pp. 87–96.PubMedGoogle Scholar
  84. 84.
    De Castro, J. and P. Viars, Utilisation pratique des analgesiques centraux en anesthesie et reanimation. Ars Med, 1968, 23: pp. 1–228.Google Scholar
  85. 85.
    Wermeling, D.P., et al., Patient-controlled analgesia using butorphanol for postoperative pain control: an open label study, in Butorphanol Tartrate: Research Advances in Multiple Clinical Settings, C.E. Rosow, Editor, 1986, S. Karger: Basel, Paris, London, New York, Singapore, Sydney. pp. 31–39.Google Scholar
  86. 86.
    Freye, E., F. Ciramelli, and A. Fournell, Nalbuphine versus pentazocine in postoperative pain after orthopedic surgery. Schmerz-Pain-Douleur, 1986, 3: pp. 101–105.Google Scholar
  87. 87.
    Murphy, M.R. and C.C. Hug, The enflurane sparing effect of morphine, butorphanol, and nalbuphine. Anesthesiology, 1982, 57: pp. 489–492.PubMedGoogle Scholar
  88. 88.
    Dumas, P.A. MAC reduction of enflurane and isoflurane and postoperative findings with nalbuphine HCl and fentanyl: A retrospective study, in VII World Congress of Anaesthesiologists. 1984, Exerpta Medica: Manila/Philippines, Amsterdam.Google Scholar
  89. 89.
    Romagnoli, A. and A.S. Keats, Ceiling effect for respiratory depression by nalbuphine. Clin Pharmacol Ther, 1980, 27: pp. 478–485.PubMedGoogle Scholar
  90. 90.
    Kubicki, S. and R. Stölzel, The “narcotic” component of fentanyl. L’anesthese vigile et subvigile. Ars Med, 1970, 1: p. 37.Google Scholar
  91. 91.
    Kugler, J., et al., Die hypnotische Wirkung von Fentanyl und Sufentanil. Anaesthesist, 1977, 26: pp. 343–348.PubMedGoogle Scholar
  92. 92.
    Freye, E. and E. Hartung, Kardiovaskuläre und zentralnervöse Effekte unter Fentanyl versus Sufentanil bei der Intubation herzchirurgischer Patienten. Anästhesie Aktuell, 1993, 9: pp. 3–14.Google Scholar
  93. 93.
    Nilsson, E. and D.H. Ingvar, EEG findings in neuroleptanalgesia. Acta Anaesth Scand, 1967, 11: pp. 121–127.PubMedGoogle Scholar
  94. 94.
    Kubicki, S.T., G. Freund, and M. Schoppenhorst, Fentanyl und Sufentanil im elektroenezephalographischen Vergleich. Anaesthesist, 1977, 26: pp. 333–342.PubMedGoogle Scholar
  95. 95.
    Ingvar, D.H. and E. Nilsson, Central nervous effects of neuroleptanalgesia as induced by haloperidol and phenoperidine. Acta Anaesth Scand, 1961, 5: pp. 85–88.PubMedGoogle Scholar
  96. 96.
    Kubicki, S. and Z. P., EEG-Veränderungen durch Neuroleptanalgesie. Anästh Wiederbelebg, 1966, 9: pp. 44–49.Google Scholar
  97. 97.
    Kubicki, S., and P. Zodeck, Exzitatorische und inhibitorische Phänomene am Zentralnervensystem, verursacht durch Fentanyl, in Neue Klinische Aspekte der Neuroleptanalgesie, W.F. Henschel, Editor, 1970, Schattauer: Stuttgart, New York. pp. 21–30.Google Scholar
  98. 98.
    Freye, E. and J.O. Arndt, Perfusion of the fourth cerebral ventricle with fentanyl induces naloxone reversible hypotension, bradycardia, baroreflex depression and sleep in unanaesthetized dogs. Naunyn-Schmiedebergs Arch Pharmacol, 1979, 307: pp. 123–128.PubMedGoogle Scholar
  99. 99.
    Kuhar, M.J., C.B. Pert, and S.H. Snyder, Regional distribution of opiate receptor binding in monkey and human brain. Nature, 1973, 245: pp. 447–450.PubMedGoogle Scholar
  100. 100.
    Mc Kenzie, J.S. and N.R. Beechy, The effects of morphine and pethidine on somatic evoked responses in the midbrain of the cat, and their relevance to analgesia. Electroenceph Clin Neurophysiol, 1962, 14: pp. 501–519.Google Scholar
  101. 101.
    Hassler, R., Wechselwirkungen zwischen dem System der schnellen Schmerzempfindung und dem des langsamen, nachhaltigen Schmerzgefühl. Arch Klin Chir, 1976, 342: p. 47.Google Scholar
  102. 102.
    Hassler, R., Über die Zweiteilung der Schmerzempfindung und des Schmerzgefühl, in Schmerz, J. R., et al., Editors, 1972, Thieme: Stuttgart. p. 105.Google Scholar
  103. 103.
    De Castro, J., et al., Comparative study of cardiovascular, neurological, and metabolic side effects of eight narcotics in dogs. Acta Anaesth Belg, 1979, 30: pp. 5–99.PubMedGoogle Scholar
  104. 104.
    Goroszeniuk, I., A. Malagosia, and R.M. Jones, Genralized grand mal seizure after recovery from uncomplicated fentanyl-etomidate anesthesia. Anesth Analg, 1986, 65: pp. 979–981.PubMedGoogle Scholar
  105. 105.
    Hoten, A.O., Another case of grand mal seizure after fentanyl aministration. Anesthesiology, 1983, 60: pp. 387–388.Google Scholar
  106. 106.
    Brian, S.E. and A.B. Seifen, Tonic-clonic activity after sufentanil. Anesth Analg, 1987, 66: p. 481.Google Scholar
  107. 107.
    Scott, J.C. and F.H. Sarnquist, Seizure-like movements during fentanyl infusion with absence of seizure activity in a simultaneous EEG recording. Anesthesiology, 1983, 62: pp. 812–814.Google Scholar
  108. 108.
    Carlsson, C., et al., The effects of high-dose fentanyl on cerebral circulation and metabolism in rats. Anesthesiology, 1982, 57: pp. 375–380.PubMedGoogle Scholar
  109. 109.
    Jaffe, J.H. and W.R. Martin, Opioid analgesics and antagonists, in The Pharmacological Basis of Therapeutics, A.G. Gilman, et al., Editors, 1993, McGraw Hill: New York. pp. 485–531.Google Scholar
  110. 110.
    Kugler, J., A. Doenicke, and M. Laub, Das Elektroenzephalogramm nach Etomidate. Anaesthesiol Wiederbeleb, 1977, 106: pp. 31–47.Google Scholar
  111. 111.
    Irwin, R.S., Cough, in Diagnose and Treatment of Symptoms of the Respiratory Tract, R.S. Irwin, F.J. Curley, and R.F. Grossman, Editors, 1997, Futura Publishing Company: New York. pp. 1–54.Google Scholar
  112. 112.
    Chau, T.T., F.E. Carter, and L.S. Harris, 3H-codeine binding in the guinea pig lower brain stem. Pharmacology, 1982, 25: pp. 12–17.PubMedGoogle Scholar
  113. 113.
    Borrison, H.L. and S.C. Wang, Physiology and pharmacology of vomiting. Pharmacol Rev, 1953, 5: pp. 192–230.Google Scholar
  114. 114.
    Scuderi, P., et al., Treatment of postoperative nausea and vomiting after outpatient surgery with the 5-HT3 antagonist ondansetron. Anesthesiology, 1993, 78(1): pp. 15–20.PubMedGoogle Scholar
  115. 115.
    McKenzie, R., et al., Comparison of ondansetron versus placebo to prevent postoperative nausea and vomiting in women undergoing ambulatory gynecologic surgery. Anesthesiology, 1993, 78(1): pp. 21–28.PubMedGoogle Scholar
  116. 116.
    Gan, T.J., et al., Coinsensus guidelines for managing postoperative nausea and vomiting. Anesth Analg, 2003, 97: pp. 62–71.PubMedGoogle Scholar
  117. 117.
    Apfel, C.C., et al., Postoperatives Erbrechen – Ein Score zur Voraussage des Erbrechensrisikos nach Inhalationsanästhesien. Anaesthesist, 1998, 47: pp. 732–740.PubMedGoogle Scholar
  118. 118.
    Sneyed, J.R., et al., A meta-analysis of nausea and vomiting following maintenance of anaesthesia with propofol or inhational agents. Eur J Anaesth, 1998, 15: pp. 433–445.Google Scholar
  119. 119.
    Heinz, I., B. Walder, and M.R. Tramler, Dexamethasone for the prevention of postoperative nausea and emesis- A quantitative systemic review. Anesth Analg, 2000, 90: pp. 186–194.Google Scholar
  120. 120.
    Habib, A.S. and T.J. Gan, Food and drug admistration black box warning on the perioperative use of deoperidol: a review of the cases. Anesth Analg, 2003, 96: pp. 1377–1379.PubMedGoogle Scholar
  121. 121.
    White, P.F., et al., Effect of low-dose droperidol on the QT interval during and after general anesthesia: a placebo-controlled study. Anesthesiology, 2005, 102: pp. 1101–1105.PubMedGoogle Scholar
  122. 122.
    Charbit, B., et al., Prolongation of QTc interval after postoperative nausea and vomiting treatment by droperidol or ondansetron. Anesthesiology, 2005, 102: pp. 1094–1100.PubMedGoogle Scholar
  123. 123.
    Habib, A.S. and T.J. Gan, The effectiveness of rescue antiemetics after failure of prophylaxis with ondansetron or droperidol: a preliminary report. J Clin Anesth, 2005, 17: pp. 62–65.PubMedGoogle Scholar
  124. 124.
    Havemann, U., L. Turski, and K. Kuschinsky, Role of opioid receptors in the substantia nigra in morphine-induced muscular rigidity. Life Sci, 1982, 31: pp. 2319–2322.PubMedGoogle Scholar
  125. 125.
    Paakkari, P. and G. Feuerstein, Antagonism of dermorphin-induced catalepsy with naloxone, TRH-analog CG3703 and the benzodiazepine antagonist, Ro 15-1788. Neuropharmacology, 1988, 27(10): pp. 1007–1012.PubMedGoogle Scholar
  126. 126.
    Amalric, M., et al., “Catatonia” produced by alfentanil is reversed by methylnaloxonium microinjections into the brain. Brain Res, 1986, 386: pp. 287–295.PubMedGoogle Scholar
  127. 127.
    Freund, F.G., et al., Abdominal muscular rigidity induced by morphine and nitrous oxide. Anesthesiology, 1973, 38: p. 358.PubMedGoogle Scholar
  128. 128.
    Sokoll, M.D., J.L. Hoyt, and S.D. Georgids, Studies in muscular rigidity, nitrous oxide and narcotic analgesic agents. Anesth Analg, 1972, 51: p. 16.PubMedGoogle Scholar
  129. 129.
    Freye, E. and K. Kuschinsky, The effect of fentanyl and droperidol on the dopamine metabolism of the rat striatum. Pharmacology, 1976, 14: pp. 1–7.PubMedGoogle Scholar
  130. 130.
    Kuschinsky, K. and O. Hornykiewicz, Morphine katalepsy in the rat: relation to striatal dopamine metabolism. Eur J Pharmacol, 1972, 19: p. 119.PubMedGoogle Scholar
  131. 131.
    Freye, E., Tyrosine hydroxylation in the rat striatum after fentanyl and droperidol in vivo. Expt Brain Res, 1976, 26: pp. 541–545.Google Scholar
  132. 132.
    Kelly, P.H. and K.E. Moore, Decrease of neocortical choline acetyltransferase after lesion of the globus pallidum in the rat. Exp Neurol, 1978, 61: pp. 479–483.PubMedGoogle Scholar
  133. 133.
    Jaffe, T.B. and F.M. Ramsey, Attenuation of fentanyl-induced truncal rigidity. Anesthesiology, 1983, 58: p. 562.PubMedGoogle Scholar
  134. 134.
    Freye, E., E. Hartung, and R. Buhl, Die Lungencompliance wird durch die rasche Injektion von Alfentanil beeinträchtigt. Anaesthesist, 1986, 35: pp. 543–546.PubMedGoogle Scholar
  135. 135.
    Weinger, M.B., I.S. Segal, and M. Maze, Dexemedetomidine, acting through central alpha2-adrenoceptors, prevents opiate-induced muscle rigidity in the rat. Anesthesiology, 1991, 71: pp. 242–249.Google Scholar
  136. 136.
    Kromer, W., Gastrointestinal effects of opioids, in Opioids II, A. Herz, Editor, 1993, Springer: Berlin, Heidelberg, New York. pp. 163–190.Google Scholar
  137. 137.
    Champion, S.E., et al., Naloxone and morphine inhibit gastric emptying of solids. Can J Physiol Pharmacol, 1982, 60: pp. 732–734.PubMedGoogle Scholar
  138. 138.
    Dingledine, R. and A. Goldstein, Effect of synaptic transmission blockade on morphine action in the guinea pig myenteric plexus. J Pharmacol Exp Ther, 1976, 196: pp. 97–106.PubMedGoogle Scholar
  139. 139.
    Polak, J.M., et al., Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet, 1977, 1: pp. 972–974.PubMedGoogle Scholar
  140. 140.
    Dashwood, M.R., et al., Autoradiographic localisation of opiate receptors in rat small intestine. Eur J Pharmacol, 1985, 107: p. 267.Google Scholar
  141. 141.
    Wienbeck, M. and M.M. Körner, Influence of opiates on colonic motility. Clin Res Rev, 1981, 1: pp. 199–204.Google Scholar
  142. 142.
    Ward, S.J. and A.E. Takemori, Relative involvement of mu, kappa, and delta receptor mechanisms of opiate-mediated antinociception in mice. J Pharmacol Exp Ther, 1983, 22: pp. 525–530.Google Scholar
  143. 143.
    Manara, L., et al., Inhibition of gastrointestinal transit by morphine in rats results primarely from direct drug action on gut opioid sites. J Pharmacol Exp Ther, 1986, 237: pp. 945–949.PubMedGoogle Scholar
  144. 144.
    Vater, M. and A.R. Aitkenhead, Effect of morphine on gastric emptying. Anaesthesia, 1985, 40: pp. 81–82.PubMedGoogle Scholar
  145. 145.
    Park, G.R. and D.A. Weir, A comparison of the effect of oral controlled release morphine and intramuscular morphine on gastric emptying. Anaesthesia, 1985, 39: pp. 645–648.Google Scholar
  146. 146.
    Yuan, C.S., et al., Methylnaltrexone prevents morphine-induced delay on oral-cecal transit time without affecting analgesia: a double-blind randomized placebo-controlled trial. Clin Pharmacol Ther, 1996, 59: pp. 469–475.PubMedGoogle Scholar
  147. 147.
    Yuan, C.S. and J.F. Foss, Oral methylnaltrexone for opioid-induced constipation. JAMA, 2000, 284: pp. 1383–1384.PubMedGoogle Scholar
  148. 148.
    Liberto, J.G., et al., Effects of ADL 8-2698, a peripherally restricted mu opioid anntagost, on gut motility in methadone and LAAM-dependent patients with opioid-induced constipation. A dose-ranging study. Drug Alcohol Depend, 2001, 63: p. s91.Google Scholar
  149. 149.
    Wong, C.L., The effects of morphine and nalbuphine on intestinal transit in mice. Meth and Find Exptl Clin Pharmacol, 1984, 6: pp. 685–689.Google Scholar
  150. 150.
    Shook, J.E., et al., Peptide opioid antagonist seperates peripheral and central opioid antitransit effects. J Pharmacol Exp Ther, 1987, 243: pp. 492–500.PubMedGoogle Scholar
  151. 151.
    Freye, E. and V. Knüfermann, Die gastro-coekale Transitzeit nach Fentanyl/Midazolam- im Vergleich zur Enfluran- und Ketamin/Midazolam-Narkose. Anaesthesist, 1991, 40, Suppl 2: p. S 264.Google Scholar
  152. 152.
    Freye, E. and V. Knüfermann, Keine Hemmung der intestinalen Motilität nach Ketamin-/Midazolamnarkose. Anaesthesist, 1994, 43: pp. 87–91.PubMedGoogle Scholar
  153. 153.
    De Vos, V., Immobilization of free-ranging wild animals using a new drug. Vet Rec, 1978, 103: pp. 64–68.PubMedGoogle Scholar
  154. 154.
    Cookson, R.F., Carfentanil and lofentanil. Clin & Anaesthesiol, 1983, 1: pp. 156–158.Google Scholar
  155. 155.
    Niemegeers, C.J.E., et al., Sufentanil, a very potent and extremely safe intravenous morphine-like compound in mice, rats and dogs. Drug Res/Arzneimittelforsch, 1976, 216: pp. 1551–1556.Google Scholar
  156. 156.
    Janssen, P.A.J., The development of new synthetic narcotics, in Opioids in Anesthesia, F.G. Estafanous, Editor, 1984, Butterworth: Boston. pp. 37–44.Google Scholar
  157. 157.
    Meert, T.F., Pharmacotherapy of opioids: present and future developments. Pharm World Sci, 1996, 18: pp. 1–15.PubMedGoogle Scholar
  158. 158.
    Freye, E., Hämodynamische Wirkungen hoher Dosen von Fenanyl, Meperidine und Naloxon beim Hund, in Probleme der intravenösen Anästhesie, 6. Bremer Neuroleptanalgesie-Symposium, W. Henschel, Editor, 1976, Peri-Med Dr. med. Straube: Erlangen. pp. 109–124.Google Scholar
  159. 159.
    Freye, E., Cardiovascular effects of high doses of fentanyl, meperidine and naloxone in dogs. Anesth Analg, 1974, 53: pp. 40–47.PubMedGoogle Scholar
  160. 160.
    Lappas, D.G., et al., Filling pressures of the heart and pulmonary circulation of the patient with coronary artery disease after large doses of morphine. Anesthesiology, 1975, 42: p. 153.PubMedGoogle Scholar
  161. 161.
    Braunwald, E., Control of myocardial oxygen consumption. Am J Cardiol, 1971, 27: p. 416.PubMedGoogle Scholar
  162. 162.
    De Castro, J. and P. Viars, Utilisation pratique des analgésiques centraux en anesthésie et réanimation. Ars Med, 1968, 23: pp. 74–74.Google Scholar
  163. 163.
    Sarne, Y. and M. Gafni, Determinants of the stimulatory opioid effect on transmitter release and possible cellular mechanisms: overview and original results. Brain Res, 996, 722: pp. 203–206.Google Scholar
  164. 164.
    Harrison, C., D. Smart, and D.G. Lambert, Stimulatory effects of opioids. Br J Anaesth, 1998, 81: pp. 20–28.PubMedGoogle Scholar
  165. 165.
    Kaiser, C., M.J. Pontecorvo, and R.E. Mewshaw, Sigma receptor ligands: function and activity. Neurotransmissions, 1991, 7(1): pp. 1–5.Google Scholar
  166. 166.
    Zola, E.M. and D.C. MacLeod, Comparative effects and analgesic efficacy of the agonist-antagonist opioids. Drug Intell Clin Pharm, 1983, 17: pp. 411–417.PubMedGoogle Scholar
  167. 167.
    Boldt, J., et al., Meptazinol, ein neuartiges Analgetikum. Anaesthesist, 1987, 36: pp. 622–628.PubMedGoogle Scholar
  168. 168.
    De Castro, J., S. Andrieu, and J. Boogaerts, Buprenorphine. A review of its pharmacological properties and therapeutical uses, in New Drug Series, J. De Castro, Editor. Vol. 1, 1982, Antwerpen: Kluwer NVM & ISA. p. 180.Google Scholar
  169. 169.
    Strauer, B.E., Contractile responses to morphine, piritramid and fentanyl: a comparative study of effects on the isolated myocardium. Anesthesiology, 1972, 37: p. 304.Google Scholar
  170. 170.
    Vargish, T., et al., Myocardial opiate receptor activity is stereospecific, independent of muscarinic receptor antagonism, and may play a role in depressing myocardial function. Surgery, 1987, 102: pp. 171–177.PubMedGoogle Scholar
  171. 171.
    De Castro, J., P. Viars, and J.C.L. Leleu, Utilisation de la pentazocine comme analgesique pour le traitement des douleurs post-operatoires. Etude comparative entre le pethidine, la piritramide et la pentazocine, in Utilisation de la pentazocine en Anesthesie et Reanimation, J. De Castro, Editor, 1969, Ars Medici: Bruxelles. pp. 99–109.Google Scholar
  172. 172.
    Vargish, T., et al., Hemodynamic changes following corticosteroid and naloxone infusion in dogs subjected to hypovolemic shock without resuscitation. Life Sci, 1983, 33: pp. 489–493.PubMedGoogle Scholar
  173. 173.
    Michaels, I., J.R. Trout, and P.G. Barash, Nitrous oxide as an adjunct to narcotic anesthesia, in Opioids in Anesthesa, F.G. Estafanous, Editor, 1984, Butterworth: Boston, London, Sydney, Durban, Toronto. pp. 256–260.Google Scholar
  174. 174.
    Michaels, I. and P.C. Barash, Does nitrous oxide or a reduced FI02 alter the hemodanymic function during high dose sufentanil anesthesia? Anesth Analg, 1983, 62: p. 275.Google Scholar
  175. 175.
    Craemer, J.E., M.B. Maltz, and A.J. Camm, The antiarrhythmic effect of meptazinol. Eur Heart J, 1985, 6: pp. 717–718.Google Scholar
  176. 176.
    Freye, E., Effects of high doses of fentanyl on myocardial infarction and cardiogenic shock in the dog. Resuscitation, 1975, 3: pp. 105–113.Google Scholar
  177. 177.
    Hess, L., et al., The antifibrillatory effect of fentanyl, sufentanil, and carfentanbil in the acute phase of local myocardial ischemia in the dog. Acta Cardiol, 1989, 150: pp. 303–311.Google Scholar
  178. 178.
    Saini, V., et al., Antifibrillatory action of the narcotic agent fentanyl. Am Heart J, 1988, 115: pp. 508–514.Google Scholar
  179. 179.
    DeSilva, R.A., R.L. Verrier, and B. Lown, Protective effect of the vagotonic action of morphine sulfate on ventricular vulnerability. Cardiovasc Res, 1978, 12: pp. 167–181.Google Scholar
  180. 180.
    Freye, E., G. Avril, and E. Hartung, Les effets anti-arrythmiques des opiaces. Comparison avec un beta-bloqueur chez le chien. Cah d’Anesthesiol, 1981, 29: pp. 591–598.Google Scholar
  181. 181.
    Sharpe, L.G. and W.B. Pickworth, Opposite pupillary effects in the cat and the dog after microinjection of morphine, normorphine and clonioline in the Edinger–Westphal nucleus. Brain Res Bull, 1985, 15: pp. 329–333.PubMedGoogle Scholar
  182. 182.
    Lee, H.K. and S.C. Wang, Mechanism of morphine – induced miosis in the dog. J. Pharmacol Expt Ther. 1975, 192: pp. 415–431.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Enno Freye
    • 1
  • Joseph Victor Levy
    • 2
  1. 1.Heinrich-Heine-UniversityDüsseldorfGermany
  2. 2.University of the PacificUSA

Personalised recommendations