Advertisement

Organelle Proteome Variation Among Different Cell Types: Lessons from Nuclear Membrane Proteins

  • Deirdre M. Kavanagh
  • William E. Powell
  • Poonam Malik
  • Vassiliki Lazou
  • Eric C. Schirmer
Part of the Subcellular Biochemistry book series (SCBI, volume 43)

Keywords

Nuclear Envelope Integral Membrane Protein Nuclear Pore Complex Nuclear Lamina Sucrose Cushion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, R.P. and Blobel, G. (1975) Isolation of nuclear pore complexes in association with a lamina. Proc. Natl Acad. Sci. U.S.A. 72, 1007–1011.PubMedCrossRefGoogle Scholar
  2. Apel, E.D., Lewis, R.M., Grady, R.M. and Sanes, J.R. (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem. 275, 31986–31995.PubMedCrossRefGoogle Scholar
  3. Arteaga, M.F., Gutierrez, R., Avila, J., Mobasheri, A., Diaz-Flores, L. and Martin-Vasallo, P. (2004) Regeneration influences expression of the Na+, K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience 129, 691–702.PubMedCrossRefGoogle Scholar
  4. Ashery-Padan, R., Weiss, A.M., Feinstein, N. and Gruenbaum, Y. (1997) Distinct regions specify the targeting of otefin to the nucleoplasmic side of the nuclear envelope. J. Biol. Chem. 272, 2493–2499.PubMedCrossRefGoogle Scholar
  5. Bengtsson, L. and Wilson, K.L. (2004) Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr. Opin. Cell Biol. 16, 73–79.PubMedCrossRefGoogle Scholar
  6. Berger, R., Theodor, L., Shoham, J., Gokkel, E., Brok-Simoni, F., Avraham, K.B., Copeland, N.G., Jenkins, N.A., Rechavi, G. and Simon, A.J. (1996) The characterization and localization of the mouse thymopoietin/lamina-associated polypeptide 2 gene and its alternatively spliced products. Genome Res. 6, 361–370.PubMedCrossRefGoogle Scholar
  7. Bione, S., Maestrini, E., Rivella, S., Mancini, M., Regis, S., Romeo, G. and Toniolo, D. (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat. Genet. 8, 323–327.PubMedCrossRefGoogle Scholar
  8. Bkaily, G., Nader, M., Avedanian, L., Jacques, D., Perrault, C., Abdel-Samad, D., D’Orleans-Juste, P., Gobeil, F. and Hazzouri, K.M. (2004) Immunofluorescence revealed the presence of NHE-1 in the nuclear membranes of rat cardiomyocytes and isolated nuclei of human, rabbit, and rat aortic and liver tissues. Can. J. Physiol. Pharmacol. 82, 805–811.PubMedCrossRefGoogle Scholar
  9. Blobel, G. and Potter, V.R. (1966) Nuclei from rat liver: isolation method that combines purity with high yield. Science 154, 1662–1665.PubMedCrossRefGoogle Scholar
  10. Bonne, G., Di Barletta, M.R., Varnous, S., Becane, H.M., Hammouda, E.H., Merlini, L., Muntoni, F., Greenberg, C.R., Gary, F., Urtizberea, J.A., Duboc, D., Fardeau, M., Toniolo, D. and Schwartz, K. (1999) Mutations in the gene encoding laminA/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat. Genet. 21, 285–288.PubMedCrossRefGoogle Scholar
  11. Brachner, A., Reipert, S., Foisner, R. and Gotzmann, J. (2005) LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J. Cell Sci. 118, 5797–5810.PubMedCrossRefGoogle Scholar
  12. Brown, D.T. (2001) Histone variants: are they functionally heterogeneous? Genome Biol. 2, REVIEWS0006.Google Scholar
  13. Cao, H. and Hegele, R.A. (2000) Nuclear laminA/C R482Q mutation in Canadian kindreds with Dunnigantype familial partial lipodystrophy. Hum. Mol. Genet. 9, 109–112.PubMedCrossRefGoogle Scholar
  14. Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B., Stahl, P.D. and Hodzic, D. (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53.PubMedCrossRefGoogle Scholar
  15. Cronshaw, J., Krutchinsky, A., Zhang, W., Chait, B. and Matunis, M. (2002) Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927.PubMedCrossRefGoogle Scholar
  16. Cruttwell, C., Bernard, J., Hilly, M., Nicolas, V., Tunwell, R.E. and Mauger, J.P. (2005) Dynamics of the inositol 1,4,5-trisphosphate receptor during polarisation of MDCK cells. Biol. Cell 97, 699–707.PubMedCrossRefGoogle Scholar
  17. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C., Munnich, A., Le Merrer, M. and Levy, N. (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055.PubMedCrossRefGoogle Scholar
  18. De Sandre-Giovannoli, A., Chaouch, M., Kozlov, S., Vallat, J., Tazir, M., Kassouri, N., Szepetowski, P., Hammadouche, T., Vandenberghe, A., Stewart, C.L., Grid, D. and Levy, N. (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736.PubMedCrossRefGoogle Scholar
  19. Dechat, T., Gotzmann, J., Stockinger, A., Harris, C.A., Talle, M.A., Siekierka, J.J. and Foisner, R. (1998) Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J. 17, 4887–4902.PubMedCrossRefGoogle Scholar
  20. Dhe-Paganon, S., Werner, E.D., Chi, Y.-I. and Shoelson, S.E. (2002) Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384.PubMedCrossRefGoogle Scholar
  21. Dreger, M., Bengtsson, L., Schoneberg, T., Otto, H., and Hucho, F. (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc. Natl Acad. Sci. U.S.A. 98, 11943–11948.PubMedCrossRefGoogle Scholar
  22. Dwyer, N. and Blobel, G. (1976) A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J. Cell. Biol. 70, 581–591.PubMedCrossRefGoogle Scholar
  23. Ellenberg, J., Siggia, E.D., Moreira, J.E., Smith, C.L., Presley, J.F., Worman, H.J. and Lippincott-Schwartz, J. (1997) Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell. Biol. 138, 1193–1206.PubMedCrossRefGoogle Scholar
  24. Ellis, D.J., Jenkins, H., Whitfield, W.G. and Hutchison, C.J. (1997) GST-lamin fusion proteins act as dominant negative mutants in Xenopus egg extract and reveal the function of the lamina in DNA replication. J. Cell Sci. 110, 2507–2518.PubMedGoogle Scholar
  25. Erickson, E.S., Mooren, O.L., Moore-Nichols, D. and Dunn, R.C. (2004) Activation of ryanodine receptors in the nuclear envelope alters the conformation of the nuclear pore complex. Biophys. Chem. 112, 1–7.PubMedCrossRefGoogle Scholar
  26. Eriksson, M., Brown, W.T., Gordon, L.B., Glynn, M.W., Singer, J., Scott, L., Erdos, M.R., Robbins, C.M., Moses, T.Y., Berglund, P., Dutra, A., Pak, E., Durkin, S., Csoka, A.B., Boehnke, M., Glover, T.W. and Collins, F.S. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298.PubMedCrossRefGoogle Scholar
  27. Fatkin, D., MacRae, C., Sasaki, T., Wolff, M., Porcu, M., Frenneaux, M., Atherton, J., Vidaillet, H.J. Jr., Spudich, S., De Girolami, U., Seidman, J.G., Seidman, C., Muntoni, F., Muehle, G., Johnson, W. and McDonough, B. (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724.PubMedCrossRefGoogle Scholar
  28. Fidzianska, A., Toniolo, D. and Hausmanowa-Petrusewicz, I. (1998) Ultrastructural abnormality of sarcolemmal nuclei in Emery-Dreifuss muscular dystrophy (EDMD). J. Neurol. Sci. 159, 88–93.PubMedCrossRefGoogle Scholar
  29. Fields, A.P., Pettit, G.R. and May, W.S. (1988) Phosphorylation of lamin B at the nuclear membrane by activated protein kinase C. J. Biol. Chem. 263, 8253–8260.Google Scholar
  30. Fitzgerald, J., Kennedy, D., Viseshakul, N., Cohen, B.N., Mattick, J., Bateman, J.F. and Forsayeth, J.R. (2000) UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res. 877, 110–123.PubMedCrossRefGoogle Scholar
  31. Foisner, R. and Gerace, L. (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73, 1267–1279.PubMedCrossRefGoogle Scholar
  32. Gerace, L., Blum, A. and Blobel, G. (1978) Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J. Cell. Biol. 79, 546–566.PubMedCrossRefGoogle Scholar
  33. Gerace, L. and Burke, B. (1988) Functional organization of the nuclear envelope. Annu. Rev. Cell Biol. 4, 335–374.PubMedCrossRefGoogle Scholar
  34. Gerace, L., Ottaviano, Y. and Kondor-Koch, C. (1982) Identification of a major polypeptide of the nuclear pore complex. J. Cell Biol. 95, 826–837.PubMedCrossRefGoogle Scholar
  35. Goldberg, M., Lu, H., Stuurman, N., Ashery-Padan, R., Weiss, A.M., Yu, J., Bhattacharyya, D., Fisher, P.A., Gruenbaum, Y. and Wolfner, M.F. (1998) Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol. Cell Biol. 18, 4315–4323.PubMedGoogle Scholar
  36. Goodchild, R.E. and Dauer, W.T. (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc. Natl Acad. Sci. U.S.A. 101, 847–852.PubMedCrossRefGoogle Scholar
  37. Goodchild, R.E. and Dauer, W.T. (2005) The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J. Cell Biol. 168, 855–862.PubMedCrossRefGoogle Scholar
  38. Gough, L.L., Fan, J., Chu, S., Winnick, S. and Beck, K.A. (2003) Golgi localization of Syne-1. Mol. Biol. Cell 14, 2410–2424.PubMedCrossRefGoogle Scholar
  39. Greber, U.F., Senior, A. and Gerace, L. (1990) A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 9, 1495–1502.PubMedGoogle Scholar
  40. Grewal, S., Herbert, S.P., Ponnambalam, S. and Walker, J.H. (2005) Cytosolic phospholipase A2-alpha and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J. 272, 1278–1290.PubMedCrossRefGoogle Scholar
  41. Gruenbaum, Y., Goldman, R.D., Meyuhas, R., Mills, E., Margalit, A., Fridkin, A., Dayani, Y., Prokocimer, M. and Enosh, A. (2003) The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 226, 1–62.PubMedGoogle Scholar
  42. Hahn, C.G. and Covault, J. (1990) Isolation of transcriptionally active nuclei from striated muscle using Percoll density gradients. Anal. Biochem. 190, 193–197.PubMedCrossRefGoogle Scholar
  43. Hallberg, E., Wozniak, R.W. and Blobel, G. (1993) An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J. Cell Biol. 122, 513–521.PubMedCrossRefGoogle Scholar
  44. Hanisch, F., Neudecker, S., Wehnert, M. and Zierz, S. (2002) Hauptmann-Thannhauser muscular dystrophy and differential diagnosis of myopathies associated with contractures. Nervenarzt 73, 1004–1011.PubMedCrossRefGoogle Scholar
  45. Held, I.R., Rodrigo, R.T., Yeoh, H.C. and Tonaki, H. (1977) Isolation of nuclei from red and white skeletal muscles of the adult rat. Exp. Cell Res. 105, 191–197.PubMedCrossRefGoogle Scholar
  46. Hellemans, J., Preobrazhenska, O., Willaert, A., Debeer, P., Verdonk, P.C., Costa, T., Janssens, K., Menten, B., Van Roy, N., Vermeulen, S.J., Savarirayan, R., Van Hul, W., Vanhoenacker, F., Huylebroeck, D., De Paepe, A., Naeyaert, J.M., Vandesompele, J., Speleman, F., Verschueren, K., Coucke, P.J. and Mortier, G.R. (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat. Genet. 36, 1213–1218.PubMedCrossRefGoogle Scholar
  47. Hnasko, R. and Ben-Jonathan, N. (2005) Developmental regulation of PV-1 in rat lung: association with the nuclear envelope and limited colocalization with Cav-1. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L275–284.PubMedCrossRefGoogle Scholar
  48. Hoffmann, K., Dreger, C.K., Olins, A.L., Olins, D.E., Shultz, L.D., Lucke, B., Karl, H., Kaps, R., Muller, D., Vaya, A., Aznar, J., Ware, R.E., Sotelo Cruz, N., Lindner, T.H., Herrmann, H., Reis, A. and Sperling, K. (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly. Nat. Genet. 31, 410–414.PubMedGoogle Scholar
  49. Kennedy, B.K., Barbie, D.A., Classon, M., Dyson, N. and Harlow, E. (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes. Dev. 14, 2855–2868.PubMedCrossRefGoogle Scholar
  50. Klein, C., Gensburger, C., Freyermuth, S., Nair, B.C., Labourdette, G. and Malviya, A. N. (2004)A120 kDa nuclear phospholipase Cgammal protein fragment is stimulated in vivo by EGF signal phosphorylating nuclear membrane EGFR. Biochemistry 43, 15873–15883.PubMedCrossRefGoogle Scholar
  51. Krimm, I., Ostlund, C., Gilquin, B., Couprie, J., Hossenlopp, P., Mornon, J., Bonne, G., Courvalin, J., Worman, H. and Zinn-Justin, S. (2002) The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure (Camb) 10, 811–823.CrossRefGoogle Scholar
  52. Kuehl, L. (1977) Isolation of skeletal muscle nuclei. Methods Cell Biol. 15, 79–88.PubMedCrossRefGoogle Scholar
  53. Lammerding, J., Schulze, P., Takahashi, T., Kozlov, S., Sullivan, T., Kamm, R., Stewart, C. and Lee, R. (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378.PubMedCrossRefGoogle Scholar
  54. Lee, H., Habas, R. and Abate-Shen, C. (2004) MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304, 1675–1678.PubMedCrossRefGoogle Scholar
  55. Lee, K., Starr, D., Cohen, M., Liu, J., Han, M., Wilson, K. and Gruenbaum, Y. (2002) Lamin-dependent localization of UNC-84, a protein required for nuclear migration in Caenorhabditis elegans. Mol. Biol. Cell 13, 892–901.PubMedCrossRefGoogle Scholar
  56. Lee, K.K. and Wilson, K.L. (2004) All in the family: evidence for four new LEM-domain proteins Lem2 (NET-25), Lem3, Lem4 and Lem5 in the human genome. Symp. Soc. Exp. Biol. 56, 329–339.PubMedGoogle Scholar
  57. Lin, F., Blake, D.L., Callebaut, I., Skerjanc, I.S., Holmer, L., McBurney, M.W., Paulin-Levasseur, M. and Worman, H.J. (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J. Biol. Chem. 275, 4840–4847.PubMedCrossRefGoogle Scholar
  58. Liu, J., Ben-Shahar, T., Riemer, D., Treinin, M., Spann, P., Weber, K., Fire, A. and Gruenbaum, Y. (2000) Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11, 3937–3947.PubMedGoogle Scholar
  59. MacCoss, M.J., Wu, C.C., Matthews, D.E. and Yates, J.R., 3rd (2005) Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal. Chem. 77, 7646–7653.PubMedCrossRefGoogle Scholar
  60. Malone, C.J., Fixsen, W.D., Horvitz, H.R. and Han, M. (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126, 3171–3181.PubMedGoogle Scholar
  61. Manilal, S., Nguyen, T.M., Sewry, C.A. and Morris, G.E. (1996) The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum. Mol. Genet. 5, 801–808.PubMedCrossRefGoogle Scholar
  62. Mansharamani, M., Hewetson, A. and Chilton, B.S. (2001) Cloning and characterization of an atypical Type IV P-type ATPase that binds to the RING motif of RUSH transcription factors. J. Biol. Chem. 276, 3641–3649.PubMedCrossRefGoogle Scholar
  63. Martins, S., Eikvar, S., Furukawa, K. and Collas, P. (2003) HA95 and LAP2 beta mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J. Cell Biol. 160, 177–188.PubMedCrossRefGoogle Scholar
  64. McKinney, M.K. and Cravatt, B.F. (2005) Structure and Function of Fatty Acid Amide Hydrolase. Annu. Rev. Biochem. 74, 411.PubMedCrossRefGoogle Scholar
  65. Moir, R., Spann, T., Herrmann, H. and Goldman, R. (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication. J. Cell Biol. 149, 1179–1192.PubMedCrossRefGoogle Scholar
  66. Mosley-Bishop, K.L., Li, Q., Patterson, L. and Fischer, J.A. (1999) Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye. Curr. Biol. 9, 1211–1220.PubMedCrossRefGoogle Scholar
  67. Mounkes, L. and Stewart, C.L. (2004) Structural organization and functions of the nucleus in development, aging, and disease. Curr. Top. Dev. Biol. 61, 191–228.PubMedGoogle Scholar
  68. Muchir, A., Bonne, G., van der Kooi, A.J., van Meegen, M., Baas, F., Bolhuis, P.A., de Visser, M. and Schwartz, K. (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459.PubMedCrossRefGoogle Scholar
  69. Navarro, C.L., De Sandre-Giovannoli, A., Bernard, R., Boccaccio, I., Boyer, A., Genevieve, D., Hadj-Rabia, S., Gaudy-Marqueste, C., Smitt, H.S., Vabres, P., Faivre, L., Verloes, A., Van Essen, T., Flori, E., Hennekam, R., Beemer, F.A., Laurent, N., Le Merrer, M., Cau, P. and Levy, N. (2004) Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–2503.PubMedCrossRefGoogle Scholar
  70. Nili, E., Cojocaru, G.S., Kalma, Y., Ginsberg, D., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Berger, R., Shaklai, S., Amariglio, N., Brok-Simoni, F., Simon, A.J. and Rechavi, G. (2001) Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J. Cell Sci. 114, 3297–3307.PubMedGoogle Scholar
  71. Ohba, T., Schirmer, E.C., Nishimoto, T. and Gerace, L. (2004) Energy- and temperature-dependent transport of integral proteins to the inner nuclear membrane via the nuclear pore. J. Cell Biol. 167, 1051–1062.PubMedCrossRefGoogle Scholar
  72. Ozaki, T., Saijo, M., Murakami, K., Enomoto, H., Taya, Y. and Sakiyama, S. (1994) Complex formation between lamin A and the retinoblastoma gene product: identification of the domain on lamin A required for its interaction. Oncogene 9, 2649–2653.PubMedGoogle Scholar
  73. Paulin-Levasseur, M., Blake, D.L., Julien, M. and Rouleau, L. (1996) The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma 104, 367–379.PubMedGoogle Scholar
  74. Raffaele Di Barletta, M., Ricci, E., Galluzzi, G., Tonali, P., Mora, M., Morandi, L., Romorini, A., Voit, T., Orstavik, K.H., Merlini, L., Trevisan, C., Biancalana, V., Housmanowa-Petrusewicz, I., Bione, S., Ricotti, R., Schwartz, K., Bonne, G. and Toniolo, D. (2000) Different Mutations in the LMNA Gene Cause Autosomal Dominant and Autosomal Recessive Emery-Dreifuss Muscular Dystrophy. Am. J. Hum. Genet. 66, 1407–1412.PubMedCrossRefGoogle Scholar
  75. Raju, G.P., Dimova, N., Klein, P.S. and Huang, H.C. (2003) SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smadl. J. Biol. Chem. 278, 428–437.PubMedCrossRefGoogle Scholar
  76. Rolls, M.M., Stein, P.A., Taylor, S.S., Ha, E., McKeon, F. and Rapoport, T.A. (1999) A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J. Cell Biol. 146, 29–44.PubMedGoogle Scholar
  77. Ronaldson, P.T., Bendayan, M., Gingras, D., Piquette-Miller, M., and Bendayan, R. (2004) Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J. Neurochem. 89, 788–800.PubMedCrossRefGoogle Scholar
  78. Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y. and Chait, B.T. (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651.PubMedCrossRefGoogle Scholar
  79. Santoni, V., Molloy, M. and Rabilloud, T. (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21, 1054–1070.PubMedCrossRefGoogle Scholar
  80. Scheele, G. (1983) Methods for the study of protein translocation across the RER membrane using the reticulocyte lysate translation system and canine pancreatic microsomal membranes. Methods Enzymol. 96, 94–111.PubMedGoogle Scholar
  81. Schirmer, E.C., Florens, L., Guan, T., Yates, J.R. 3rd and Gerace, L. (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380–1382.PubMedCrossRefGoogle Scholar
  82. Schirmer, E.C., Florens, L., Guan, T., Yates, J.R. 3rd and Gerace, L. (2005) Identification of novel integral membrane proteins of the nuclear envelope with potential disease links using subtractive proteomics, In: Novartis Found Symp No. 264 Nuclear Organization in Development and Disease. D.J. Chadwick and J.A. Goode, eds. (Chichester and New York: John Wiley & Sons Ltd.), pp. 63–76; discussion 76–80, 227–230.CrossRefGoogle Scholar
  83. Schirmer, E.C. and Gerace, L. (2004) The stability of the nuclear lamina polymer changes with the composition of lamin subtypes according to their individual binding strengths. J. Biol. Chem. 279, 42811–42817.PubMedCrossRefGoogle Scholar
  84. Schirmer, E.C. and Gerace, L. (2005) The nuclear membrane proteome: extending the envelope. Trends Biochem. Sci. 30, 551–558.PubMedCrossRefGoogle Scholar
  85. Schirmer, E.C., Guan, T. and Gerace, L. (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J. Cell Biol. 153, 479–489.PubMedCrossRefGoogle Scholar
  86. Senior, A. and Gerace, L. (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J. Cell Biol. 107, 2029–2036.PubMedCrossRefGoogle Scholar
  87. Shackleton, S., Lloyd, D.J., Jackson, S.N., Evans, R., Niermeijer, M.F., Singh, B.M., Schmidt, H., Brabant, G., Kumar, S., Durrington, P.N., Gregory, S., O’Rahilly, S. and Trembath, R.C. (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat. Genet. 24, 153–156.PubMedCrossRefGoogle Scholar
  88. Siniossoglou, S., Wimmer, C., Rieger, M., Doye, V., Tekotte, H., Weise, C., Emig, S., Segref, A. and Hurt, E.C. (1996) A novel complex of nucleoporins, which includes Sec13p and a Secl3p homolog, is essential for normal nuclear pores. Cell 84, 265–275.PubMedCrossRefGoogle Scholar
  89. Soullam, B. and Worman, H.J. (1993) The amino-terminal domain of the lamin B receptor is a nuclear envelope targeting signal. J. Cell Biol. 120, 1093–1100.PubMedCrossRefGoogle Scholar
  90. Spann, T.P., Moir, R.D., Goldman, A.E., Stick, R. and Goldman, R.D. (1997) Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol. 136, 1201–1212.PubMedCrossRefGoogle Scholar
  91. Starr, D.A. and Han, M. (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298, 406–409.PubMedCrossRefGoogle Scholar
  92. Starr, D.A., Hermann, G.J., Malone, C.J., Fixsen, W., Priess, J.R., Horvitz, H.R. and Han, M. (2001) unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development 128, 5039–5050.PubMedGoogle Scholar
  93. Staufenbiel, M. and Deppert, W. (1982) Intermediate filament systems are collapsed onto the nuclear surface after isolation of nuclei from tissue culture cells. Exp. Cell Res. 138, 207–214.PubMedCrossRefGoogle Scholar
  94. Steen, R.L., Martins, S.B., Tasken, K. and Collas, P. (2000) Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol. 150, 1251–1262.PubMedCrossRefGoogle Scholar
  95. Stuurman, N., Heins, S. and Aebi, U. (1998) Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol. 122, 42–66.PubMedCrossRefGoogle Scholar
  96. Su, A.I., Cooke, M.P., Ching, K.A., Hakak, Y., Walker, J.R., Wiltshire, T., Orth, A.P., Vega, R.G., Sapinoso, L.M., Moqrich, A., Patapoutian, A., Hampton, G.M., Schultz, P.G. and Hogenesch, J.B. (2002) Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. U.S.A. 99, 4465–4470.PubMedCrossRefGoogle Scholar
  97. Sun, G., Yuen Chan, S., Yuan, Y., Wang Chan, K., Qiu, G., Sun, K. and Ping Leung, M. (2002) Isolation of differentially expressed genes in human heart tissues. Biochim. Biophys. Acta. 1588, 241–246.PubMedGoogle Scholar
  98. Tamm, L.K., Hong, H. and Liang, B. (2004) Folding and assembly of beta-barrel membrane proteins. Biochim. Biophys. Acta. 1666, 250–263.PubMedCrossRefGoogle Scholar
  99. Tunnah, D., Sewry, C.A., Vaux, D., Schirmer, E.C. and Morris, G.E. (2005) The apparent absence of lamin B1 and emerin in many tissue nuclei is due to epitope masking. J. Mol. Histol. 36, 337–344.PubMedCrossRefGoogle Scholar
  100. Wagner, N., Schmitt, J. and Krohne, G. (2004) Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel). Eur. J. Cell Biol. 82, 605–616.PubMedCrossRefGoogle Scholar
  101. Washburn, M.P., Wolters, D. and Yates, J.R. 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.PubMedCrossRefGoogle Scholar
  102. Waterham, H., Koster, J., Mooyer, P., Noort, G.G., Kelley, R., Wilcox, W., Wanders, R., Hennekam, R. and Oosterwijk, J. (2003) Autosomal Recessive HEM/Greenberg Skeletal Dysplasia Is Caused by 3beta-Hydroxysterol Delta14-Reductase Deficiency Due to Mutations in the Lamin B Receptor Gene. Am. J. Hum. Genet. 72, 1013–1017.PubMedCrossRefGoogle Scholar
  103. Wilhelmsen, K., Litjens, S.H., Kuikman, I., Tshimbalanga, N., Janssen, H., van den Bout, I., Raymond, K. and Sonnenberg, A. (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell Biol. 171, 799–810.PubMedCrossRefGoogle Scholar
  104. Wolters, D.A., Washburn, M.P. and Yates, J.R. 3rd (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73, 5683–5690.PubMedCrossRefGoogle Scholar
  105. Worman, H.J. and Courvalin, J.C. (2002) The nuclear lamina and inherited disease. Trends Cell. Biol. 12, 591–598.PubMedCrossRefGoogle Scholar
  106. Worman, H.J., Yuan, J., Blobel, G. and Georgatos, S.D. (1988) A lamin B receptor in the nuclear envelope. Proc. Natl Acad. Sci. U.S.A. 85, 8531–8534.PubMedCrossRefGoogle Scholar
  107. Xie, X., Wu, G., Lu, Z.H., Rohowsky-Kochan, C. and Ledeen, R.W. (2004) Presence of sodium-calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: nature of exchanger-GM1 interaction. Neurochem. Res. 29, 2135–2146.PubMedCrossRefGoogle Scholar
  108. Ye, Q., Barton, R.M. and Worman, H.J. (1998) Nuclear lamin-binding proteins. Subcell. Biochem. 31, 587–610.PubMedGoogle Scholar
  109. Zhang, Q., Skepper, J.N., Yang, F., Davies, J.D., Hegyi, L., Roberts, R.G., Weissberg, P.L., Ellis, J.A. and Shanahan, C.M. (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Deirdre M. Kavanagh
    • 1
  • William E. Powell
    • 1
  • Poonam Malik
    • 1
  • Vassiliki Lazou
    • 1
  • Eric C. Schirmer
    • 1
  1. 1.University of EdinburghUK

Personalised recommendations