Skip to main content

X-Ray Diffraction of Photolytically Induced Molecular Species in Single Crystals

  • Conference paper
Models, Mysteries and Magic of Molecules

Abstract

We review developments in X-ray diffraction of single crystals that begin to enable one to quantify directly the nature of electronic perturbations induced by light in chemical structures. Such structural information is key to understanding many chemical processes and physical properties activated with light, and the scientific impetus behind this incipient area of structural science is described from academic and industrial perspectives. Photoisomerisation, photochemical reactions in the solid state and spin-crossing magnetic transitions that have enduring or irreversible states induced with light are best understood by unravelling their three-dimensional structure measured in situ in their states converted by light. Investigations conducted with single-crystal X-ray diffraction of structures in a laser-induced steady state and the experimental methods used to realise such structures are reviewed. The structural characterisation of transient photo-induced species (down to picosecond lifetime) is paramount to improve understanding of materials that undergo rapid electronic switching, which make operative much of the electronic and optical industry, as there exists an inherent relationship between the structure of the excited state and the physical properties exhibited. Prime instances include structures of molecular conductors and luminescent materials in their excited states with prospective applications as molecular wires, light-emitting diodes, non-linear optical components, triboluminescent and electroluminescent devices. Only indirect and qualitative interpretations of the nature of these excited states were formerly formulated with spectrometric techniques, but the developments in ms-ps time-resolved (laser)-pump (X-ray)-probe single-crystal diffraction techniques, described herein, are overcoming this barrier, affording results that are quantitative via a three-dimensional structural representation. Structures of transient species are reviewed and the key experimental parameters that are required for a successful experiment, in terms of characteristics of the X-rays, laser and sample are discussed. The importance of auxiliary spectroscopic experiments is also described. A future outlook on possible X-ray sources to facilitate such work and to extend it to structural studies on even more ephemeral species concludes this review

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Helliwell, “Faraday Discussions: Time-Resolved Chemistry: from structure to function”, 2003, Volume 122.

    Google Scholar 

  2. L. X. Chen, Angew. Chem. Int. Ed., 2004, 43, 2886–2905.

    Article  CAS  Google Scholar 

  3. M. Saes, C. Bressler, F. van Mourik, W. Gawelda, M. Kaiser, M. Chergui, C. Bressler, D. Grolimund, R. Abela, T. E. Glover, P. A. Heimann, R. W. Schoenlein, S. L. Johnson, A. M. Lindenberg and R. W. Falcone, Rev. Sci. Instruments, 2004, 75, 24–30, and references therein.

    Article  CAS  Google Scholar 

  4. S. R. Elliott, J. Non Cryst. Solids, 1986, 81, 71–98 and references therein.

    Article  CAS  Google Scholar 

  5. D. Kimbrough, Journal of Chemical Education, 1997, 74 (1), 51–53.

    Article  CAS  Google Scholar 

  6. B. Perman, V. Srajer, Z. Ren, T. Teng, C. Pradervand, T. Ursby, D. Bourgeois, F. Schotte, M. Wulff, R. Kort, K. Hellingwerf and K. Moffat, Science, 1998, 279, 1946–1950.

    Article  CAS  Google Scholar 

  7. S. Crosson and K. Moffat, The Plant Cell, 2002, 14, 1067–1075.

    Article  CAS  Google Scholar 

  8. W. F. Brinkman and M. R. Pinto, Bell Labs Technical Journal, 1997, 57–75.

    Google Scholar 

  9. O. Kahn, “Molecular Magnetism”, VCH, New York, 1993.

    Google Scholar 

  10. A. Y. Kovalevsky, K. A. Bagley and P. Coppens, J. Am. Chem. Soc., 2002, 124, 9241–9248.

    Google Scholar 

  11. A. Y. Kovalevsky, K. A. Bagley, J. M. Cole and P. Coppens, Inorg. Chem., 2003, 42, 140–147.

    Article  CAS  Google Scholar 

  12. Y. Ozawa, M. Terashima, M. Mitsumi, K. Toriumi, N. Yasuda, H. Uekusa and Y. Ohashi, Chem. Lett., 2003, 32, 62–63.

    Article  CAS  Google Scholar 

  13. Y. Ozawa, M. R. Pressprich and P. Coppens, J. Appl. Cryst., 1998, 31, 128–135.

    Google Scholar 

  14. M. Gembicky, D. Oss, R. Fuchs and P. Coppens, J. Syn. Rad., 2005, 12, 665.

    Google Scholar 

  15. J. M. Cole, S. L. G. Husheer, S. J. Teat and G. Bushnell-Wye, to be published.

    Google Scholar 

  16. A. Paturle, H. Graafsma, H.-S. Sheu and P. Coppens, Phys. Rev. B, 1991, 43, 14683–14691.

    Article  CAS  Google Scholar 

  17. D. Bourgeois, T. Ursby, M. Wulff, C. Pradervand, A. Legrand, W. Schildkamp, S. Labouré, V. Srajer, T. Y. Teng, M. Roth and K. Moffat, J. Synchrotron Rad., 1996, 3, 65–74.

    Google Scholar 

  18. D. R. Sandstrom, S. C. Pyke and F. W. Lytle, Stanford Synchrotron Radiat. Lab. Rep. 80/01 (1980) and Stanford Synchroton Radiat. Lab. Activities Rep. April 1980 to March 1981 (1981).

    Google Scholar 

  19. D. M. Mills, A. Lewis, A. Harootunian, J. Huang and B. Smith, Science, 1984, 223, 811–813.

    Article  CAS  Google Scholar 

  20. Z. Ren, D. Bourgeois, J. R. Helliwell, K. Moffat, V. Srajer and B. L. Stoddard, J. Synchrotron Rad, 1999, 6, 891–917.

    Google Scholar 

  21. J. R. Lakowicz, “Principles of fluorescence spectroscopy”, 2nd Edition, 1999, Plenum Press.

    Google Scholar 

  22. M. Rüdlinger, J. Schefer, G. Chevrier, N. Furer, H. U. Güdel, S. Hassühl, G. Heger, P. Schweiss, T. Vogt, T. Woike and H. Zöllner, Z. Phys. B: Cond. Matt., 1991, 83, 125–130.

    Google Scholar 

  23. C. D. Kim, S. Pillet, G. Wu, W. K. Fullagar and P. Coppens, Acta Crystallogr. A, 2002, 58, 133–137.

    Article  CAS  Google Scholar 

  24. L. Powers, B. Chance, M. Chance, B. Campell, J. Friedman, S. Khalid, C. Kumar, A. Naqui, K. S. Reddy and Y. Zhou, Biochemistry, 1987, 26, 4785–4796 and references therein.

    Article  CAS  Google Scholar 

  25. D. L. Thiel, P. Livins, E. A. Stern and A. Lewis, Nature, 1993, 362, 40–43 (corrigendum: 363, 565).

    Article  CAS  Google Scholar 

  26. M. Rüdlinger, J. Schefer, T. Vogt, T. Woike, S. Haussühl and H. Zöllner, Physica B, 1992, 180/181, 293–298.

    Article  Google Scholar 

  27. M. D. Carducci, M. R. Pressprich and P. Coppens, J. Am. Chem. Soc., 1997, 119, 2669–2678 and references therein.

    Google Scholar 

  28. P. Coppens, I. Novozhilova and A. Kovalevsky, Chem. Rev., 2002, 102, 861–883.

    Article  CAS  Google Scholar 

  29. A. Y. Kovalevsky, G. King, K. A. Bagley and P. Coppens, Chem. Eur. J., 2005, 11, 7254.

    Article  CAS  Google Scholar 

  30. K. F. Bowes, J. M. Cole, S. L. G. Husheer, P. R. Raithby, T. L. Savarese, H. A. Sparkes, S. J. Teat and J. E. Warren, Chem. Commun., 2006, 2448–2450.

    Google Scholar 

  31. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson and R. Taylor, Acta Crystallogr., 2002, B58, 389–397.

    CAS  Google Scholar 

  32. K. F. Bowes, J. M. Cole, S. L. G. Husheer, P. R. Raithby, H. A. Sparkes, S. J. Teat and J. E. Warren, J. Syn. Rad., in preparation.

    Google Scholar 

  33. J. M. Cole, S. L. G. Husheer, M. Lorenc, Q. Kong and M. Wulff, Acta Cryst. A, in preparation.

    Google Scholar 

  34. S. L. G. Husheer, J. M. Cole, D. Laundy and S. J. Teat, to be published.

    Google Scholar 

  35. T. Ohhara, J. Harada, Y. Ohashi, I. Tanaka, S. Kumazawa and N. Niimura, Acta Crystallogr. B, 2000, 56, 245–253.

    Article  Google Scholar 

  36. T. Takayama, M. Kawano, H. Uekusa, Y. Ohashi and T. Sugawara, Helv. Chim. Acta, 2003, 86, 1352–1358.

    Article  CAS  Google Scholar 

  37. A. Sekine, H. Tatsuki and Y. Ohashi, J. Organomet. Chem., 1997, 536–7, 389–398.

    Google Scholar 

  38. M. Kawano, Y. Ozawa, K. Matsubara, H. Imabayashi, M. Mitsumi, K. Toriumi and Y. Ohashi, Chem. Lett., 2002, 1130–1131.

    Google Scholar 

  39. D. Hashizume and Y. Ohashi, J. Chem. Soc., Perkin Trans., 1999, 2 (8), 1689–1694.

    Google Scholar 

  40. P. Coppens, B. Ma, O. Gerlits, Y. Zhang and P. Kulshrestha, Cryst. Eng. Comm., 2002, 4, 302–309.

    CAS  Google Scholar 

  41. M. Kawano, K. Hirai, H. Tomioka and Y. Ohashi, J. Am. Chem. Soc., 2001, 123, 6904–6908.

    Google Scholar 

  42. J. Kusz, H. Spiering and P. Gütlich, J. Appl. Cryst., 2001, 34, 229–238.

    Google Scholar 

  43. M. Marchivie, P. Guionneau, J. A. K. Howard, G. Chastanet, J.-F. Letard, A. E. Goeta and D. Chasseau, J. Am. Chem. Soc., 2002, 124, 194.

    Google Scholar 

  44. J. Elhaïk, V. A. Money, S. A. Barrett, C. A. Kilner, I. Radosavljevic Evans and M. A. Halcrow, J. Chem. Soc., Dalton Trans., 2003, 10, 2053–2060, and references therein.

    Google Scholar 

  45. C. Carbonera, J. Sanchez Costa, V. A. Money, J. Elhaik, J. A. K. Howard, M. A. Halcrow and J.-F. Letard, Dalton Trans., 2006, 25, 3058.

    Article  CAS  Google Scholar 

  46. A. L. Thompson, V. A. Money, A. E. Goeta, J. A. K. Howard and C. R. Chimie, 2005, 8, 1365.

    Google Scholar 

  47. A. Goujon, B. Gillon, A. Gukasov, J. Jeftic, Q. Nau, E. Codjovi and F. Varret, Phys. Rev. B, 2003, 67, 220401–4.

    Article  CAS  Google Scholar 

  48. N. Yasuda, M. Kanazawa, H. Uekusa and Y. Ohashi, Chem. Lett., 2002, 11, 1132–1133.

    Article  Google Scholar 

  49. W. A. Fordyce, J. G. Brummer and G. A. Crosby, J. Am. Chem. Soc., 1981, 103, 7061–7064.

    Google Scholar 

  50. P. Stein, M. K. Dickson and D. M. Roundhill, J. Am. Chem. Soc., 1983, 105, 3489–3494.

    Google Scholar 

  51. I. V. Novozhilova, A. V. Volkov and P. Coppens, J. Am. Chem. Soc., 2003, 125, 1079–1087.

    Google Scholar 

  52. L. X. Chen, G. B. Shaw, I. Novozhilova, T. Liu, G. Jennings, K. Attenkofer, G. J. Meyer and P. Coppens, J. Am. Chem. Soc., 2003, 125, 7022–7034.

    Google Scholar 

  53. L. X. Chen, G. Jennings, T. Liu, D. J. Gosztola, J. P. Hessler, D. V. Schaltrito and G. J. Meyer, J. Am. Chem. Soc., 2002, 124, 10861–10867.

    Google Scholar 

  54. P. Coppens, I. I. Vorontsov, T. Graber, A. Y. Kovalevsky, Y.-S. Chen, G. Wu, M. Gembicky and I. V. Norozhilova, J. Am. Chem. Soc., 2004, 126, 5980.

    Google Scholar 

  55. P. Coppens, O. Gerlits, I. I. Vorontsov, A. Y. Kovalevsky, Y.-S. Chen, T. Graber, M. Gembicky and I. V. Norozhilova, Chem. Commun., 2004, 19, 2144.

    Article  CAS  Google Scholar 

  56. E. Collet, M.-H. Lemée-Cailleau, M. Buron-Le Cointe, H. Cailleau, M. Wulff, T. Luty, S.-Y. Koshihara, M. Meyer, L. Toupet, P. Rabiller and S. Techert, Science, 2003, 300, 612–615.

    Google Scholar 

  57. J. M. Cole, P. R. Raithby, M. Wulff, F. Schotte, A. Plech, S. J. Teat and G. Bushnell-Wye, Faraday Discuss., 2003, 122, 119–129.

    Article  CAS  Google Scholar 

  58. S. Techert, F. Schotte and M. Wulff, Phys. Rev. Lett., 2001, 86, 2030–2033.

    Article  CAS  Google Scholar 

  59. W. Clegg, J. M. Cole, R. Morris, P. R. Raithby, S. J. Teat, C. C. Wilson, C. Wilson, J. Evans and M. Smith, Diamond Light Source Technical Report, SCI-BLP-028-0101 (for ease of availability, see also: http://www.diamond.ac.uk/Publications/1987/sci-blp-028-0101.pdf).

    Google Scholar 

  60. C. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Forster, J.-L. Martin and A. Antonetti, Nature, 1997, 390, 490–492.

    Article  CAS  Google Scholar 

  61. R. J. Tompkins, I. P. Mercer, M. Fettweis, C. J. Barnett, D. R. Klug, Lord G. Porter, I. Clark, S. Jackson, P. Matousek, A. W. Parker and M. Towrie, Rev. Sci. Instruments, 1998, 69, 3113–3117.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Cole, J.M. (2008). X-Ray Diffraction of Photolytically Induced Molecular Species in Single Crystals. In: Boeyens, J.C., Ogilvie, J. (eds) Models, Mysteries and Magic of Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5941-4_2

Download citation

Publish with us

Policies and ethics