The Ligand-Field Paradigm

Insight into Electronic Properties of Transition-metal Complexes Based on Calculations of Electronic Structure
  • Mihall Atanasov
  • Peter Comba
  • Claude A. Daul
  • Frank Neese

Abstract

An overview and a critical comparison of contemporary models to describe and to predict electronic multiplet structures and the spectroscopic behavior of transition-metal complexes with open d-shells is given in relation to experimental data including d-d absorption and ESR spectra. A ligand-field density-functional theory (LFDFT) predicts these properties with a success similar to ab initio approaches, such as the spectroscopy oriented configuration-interaction method, and better than time-dependent density-functional theory applied to open shell systems. Using well characterized systems, from classical coordination compounds [FeO4 2-, CrX6 3- (X=F,Cl), CoL6 z(z=-3, L=CN-; z=2 and 3, L=H2O)] to FeIV macrocyclic compounds with biochemical and catalytic activity, it is shown that LFDFT is able also to characterize larger systems and subtle effects such as those from surrounding influences and the second coordination sphere

Keywords

Anisotropy Manifold Catalysis Cyanide Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Bridgeman and M. Gerloch, Progr.Inorg.Chem. 45(1996) 179–281.CrossRefGoogle Scholar
  2. 2.
    T. Schönherr, M. Atanasov and H.Adamsky, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Fundamentals, Vol. 1, Section 2.36, Elsevier, Amsterdam Netherlands, 2003, p. 443–455.Google Scholar
  3. 3.
    (a) F. Neese, T. Petrenko, D. Ganyushin and G. Olbrich, Coord.Chem.Rev. 251(2007) 288–327. (b) M. Atanasov, C.A. Daul and C. Rauzy, Chem.Phys.Lett. 367(2003) 737–746.Google Scholar
  4. 4.
    M. Atanasov, C. Daul and C. Rauzy, Struct. and Bonding, 106(2004) 97–125.Google Scholar
  5. 5.
    M. Atanasov, C. Rauzy, P. Bättig and C. Daul, Int. J. Quantum Chem. 102(2005) 119–131.CrossRefGoogle Scholar
  6. 6.
    C.Daul, C.Rauzy, M.Zbiri, P.Baettig, R.Bruyndonckx, E.J.Baerends and M.Atanasov, Chem.Phys.Lett. 399(2004), 433–439.Google Scholar
  7. 7.
    F. Neese, J. Chem. Phys. 119(2003), 9428–9443.CrossRefGoogle Scholar
  8. 8.
    E.K.U. Gross and W. Kohn, Adv. Quantum Chem. 21(1990) 255.Google Scholar
  9. 9.
    E.K.U. Gross, J.F. Dobson and M. Petersilka, In: R. F. Nalewajski (ed) Density Functional Theory, Springer Series: Topics in Current Chemistry, Springer, Berlin Germany, 1996.Google Scholar
  10. 10.
    M.E. Casida, In: D.P. Chong (ed) Recent advances in density functional methods, Vol.1, World Scientific, Singapore, 1995, p. 155.Google Scholar
  11. 11.
    (a) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256(1996) 454. (b) R. Bauernschmitt and R. Ahlrichs, J. Chem. Phys. 104(1996) 9047–9052.Google Scholar
  12. 12.
    S.J.A. Van Gisbergen, J.G. Snijders and E.J. Baerends, J. Chem. Phys. 103(1995) 9347.CrossRefGoogle Scholar
  13. 13.
    A. Rosa, G. Ricciardi, O. Gritsenko and E.J. Baerends, Struct.Bond. 112(2004)49–116.Google Scholar
  14. 14.
    F. Wang and T. Ziegler, Mol. Phys. 102(2004) 2585.CrossRefGoogle Scholar
  15. 15.
    A. Dreuw, M. Head-Gordon, Chem. Rev. 105(2005) 4009–4037.CrossRefGoogle Scholar
  16. 16.
    F. Wang, T. Ziegler, E. van Lenthe, S.J.A. Van Gisbergen and E.J. Baerends, J. Chem. Phys. 122(2005) 204103.Google Scholar
  17. 17.
    M. Seth and T. Ziegler, J. Chem. Phys. 123(2005) 144105.CrossRefGoogle Scholar
  18. 18.
    H. Bethe, Ann. d. Physik, 3(1929) 165.Google Scholar
  19. 19.
    J.H. Van Vleck, J. Chem. Phys. 3(1935) 803–806.Google Scholar
  20. 20.
    J.H. Van Vleck, J. Chem. Phys. 3(1935) 807–813.Google Scholar
  21. 21.
    C.K. Jørgensen, R. Pappalardo and H.-H. Schmidtke, J. Chem. Phys. 39(1963) 1422.CrossRefGoogle Scholar
  22. 22.
    H.-H. Schmidtke and Z. Naturforsch. 19a(1964) 1502–1510.Google Scholar
  23. 23.
    C.E. Schäffer and C.K. Jørgensen, Mol. Phys. 9(1965) 401–412.CrossRefGoogle Scholar
  24. 24.
    C.E. Schäffer, Struct. Bond. 5(1968) 68–95.Google Scholar
  25. 25.
    M. Gerloch, J.H. Harding and R.G. Woolley, Struct. Bond. 46(1981) 1–46.Google Scholar
  26. 26.
    R.G. Woolley, Mol. Phys. 42(1981) 703–720.CrossRefGoogle Scholar
  27. 27.
    M. Gerloch and R.G. Woolley, Progr. Inorg. Chem. 31(1984) 371–446.CrossRefGoogle Scholar
  28. 28.
    M. Atanasov, C.A. Daul and E. Penka Fowe, Monatshefte für Chemie, 136(2005) 925–963.Google Scholar
  29. 29.
    P.-O. Löwdin, In: C.H. Wilcox (ed) Perturbation Theory and its Applications in Quantum Mechanics, Wiley, New York USA, 1966, p. 255–294.Google Scholar
  30. 30.
    C.J. Ballhausen and J.P. Dahl, Theor. Chim. Acta, 34(1974) 169.CrossRefGoogle Scholar
  31. 31.
    C.J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes, McGraw-Hill, New York USA, 1979, pp. 53–54.Google Scholar
  32. 32.
    M. Atanasov, C. Daul, H.U. Güdel, T.A. Wesolowski and M. Zbiri, Inorg. Chem. 44(2005) 2954–2963.CrossRefGoogle Scholar
  33. 33.
    M. Atanasov and H.-H. Schmidtke, Chem. Phys. 124(1988) 205.CrossRefGoogle Scholar
  34. 34.
    M. Atanasov and C.A. Daul, Chem. Phys. Lett. 379(2003) 209.CrossRefGoogle Scholar
  35. 35.
    M. Atanasov and C.A. Daul, Chem. Phys. Lett. 381(2003) 584.CrossRefGoogle Scholar
  36. 36.
    M. Atanasov and C.A. Daul, Chimia, 59(2005) 504–510.CrossRefGoogle Scholar
  37. 37.
    H. Adamsky, T. Schönherr and M. Atanasov, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Vol. 2, Elsevier, Amsterdam Netherlands, 2003, p. 661–664; http://www.aomx.deGoogle Scholar
  38. 38.
    A.J. Bridgeman, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Fundamentals, Vol. 2, Elsevier, Amsterdam Netherlands, 2003, p. 669–672; A.R. Dale, M.J. Duer, N.D. Fenton, M. Gerloch, M. Jones and R.F. McMeeking, CAMMAG5, University of Cambridge, 2001, available by contacting Dr. A.J. Bridgeman, University of Hull, UK, E-mail: a.j.bridgeman@hull.ac.uk.Google Scholar
  39. 39.
    J. Bendix, In: A.B.P. Lever (ed) Comprehensive Coordination Chemistry II, From Biology to Nanotechnology, Vol. 2, Elsevier, Amsterdam Netherlands, 2003. p. 673–676; Ligfield.Google Scholar
  40. 40.
    M. Atanasov and C.A. Daul, C.R. Chimie 8(2005) 1421–1433.Google Scholar
  41. 41.
    A. Berces et al, ADF2004.01; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2004. Available from: http://www.scm.com/Google Scholar
  42. 42.
    For a clear account of the method including [Cu(NH3)4]2+ as a completely worked out example see: F.Neese, Magn.Res.Chem. 42(2004) S187–S198.Google Scholar
  43. 43.
    J. Miralles, J.P. Daudey and R. Caballol, Chem. Phys. Lett. 198(1992), 555.CrossRefGoogle Scholar
  44. 44.
    J. Miralles, O. Castell, R. Caballol and J.P. Malrieu, Chem. Phys. 172(1993), 33.CrossRefGoogle Scholar
  45. 45.
    (a) B. Huron, J.P. Malrieu and P. Rancurel, J. Chem. Phys. 58(1973) 5745. (b) R.J. Buenker and S.D. Peyerimhoff, Theoret. Chim. Acta, 35(1974) 33. (c) M. Hanrath, B. Engels, Chem. Phys. 225(1997) 197.Google Scholar
  46. 46.
    F. Neese, ORCA, an ab-initio, density functional and semiempirical program package, Max-Planck Institute for Bioinorganic Chemistry, Mülheim an der Ruhr, Germany, 2005.Google Scholar
  47. 47.
    E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52(1984) 997.CrossRefGoogle Scholar
  48. 48.
    C. Jamorski, M.E. Casida and D.R. Salahub, J. Chem. Phys. 104(1996) 5134.CrossRefGoogle Scholar
  49. 49.
    R.E. Stratmann, G.E. Scuseria and M.J. Frisch, J. Chem. Phys. 109(1998) 8218.CrossRefGoogle Scholar
  50. 50.
    D.J. Tozer and N.C. Handy, J. Chem. Phys. 109(1998) 10180.CrossRefGoogle Scholar
  51. 51.
    S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 302(1999) 375.CrossRefGoogle Scholar
  52. 52.
    S. Hirata and M. Head-Gordon, Chem. Phys. Lett. 314(1999) 291.CrossRefGoogle Scholar
  53. 53.
    S.J.A. Van Gisbergen, J.G. Snijders and E.J. Baerends, Comput. Phys. Commun. 118(1999), 119.CrossRefGoogle Scholar
  54. 54.
    S.J.A. Van Gisbergen, J.A. Groeneveld, A. Rosa, J.G. Snijders and E.J. Baerends, J. Phys. Chem. A 103(1999) 6835.CrossRefGoogle Scholar
  55. 55.
    A. Rosa, E.J. Baerends, S.J.A. Van Gisbergen, E. Van Lenthe, J.A. Groeneveld and J.G. Snijders, J. Am. Chem. Soc. 121(1999) 10356.CrossRefGoogle Scholar
  56. 56.
    A. Rosa, G. Ricciardi, E.J. Baerends and S.J.A. Van Gisbergen, J. Phys. Chem. A, 105(2001) 3311.CrossRefGoogle Scholar
  57. 57.
    A. Dreuw, L.J. Weisman and M. Head-Gordon, J. Chem. Phys. 119(2003) 2943.CrossRefGoogle Scholar
  58. 58.
    E. Broclawik and T. Borowski, Chem. Phys. Lett. 339(2001) 433.CrossRefGoogle Scholar
  59. 59.
    B. Dai, K. Deng, J. Yang and Q. Zhu, J. Chem. Phys. 118(2003) 9608.CrossRefGoogle Scholar
  60. 60.
    V.N. Nemykin and P. Basu, Inorg. Chem. 42(2003) 4046.CrossRefGoogle Scholar
  61. 61.
    G.te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. Van Gisbergen, J.G. Snijders and T. Ziegler, J. Comput. Chem. 22(2001) 931–967; http://www.scm.com/Google Scholar
  62. 62.
    E.R. Davidson, J. Comput. Phys. 17(1975) 87.CrossRefGoogle Scholar
  63. 63.
    B.J. Hathaway and F. Stephens, J. Chem. Soc. (A) 1970, 884–888.Google Scholar
  64. 64.
    D.W. Smith, Inorg. Chim. Acta, 22(1977) 107.CrossRefGoogle Scholar
  65. 65.
    D.W. Smith, Struct. Bond.(Berl) 35(1978) 87–118.Google Scholar
  66. 66.
    M.A. Hitchman, R.G. McDonald and D. Reinen, Inorg. Chem. 25(1986) 519–522.CrossRefGoogle Scholar
  67. 67.
    F. Neese, J. Biol. Inorg. Chem. 11(2006) 702–711.CrossRefGoogle Scholar
  68. 68.
    A.D. Liehr, J. Phys. Chem. 68(1964) 665–772.CrossRefGoogle Scholar
  69. 69.
    R.J. Deeth, M.J. Duer and M. Gerloch, Inorg. Chem. 26(1987) 2573–2578.CrossRefGoogle Scholar
  70. 70.
    R.J. Deeth, M.J. Duer and M. Gerloch, Inorg. Chem. 26(1987) 2578–2582.CrossRefGoogle Scholar
  71. 71.
    R.J. Deeth and M. Gerloch, Inorg. Chem. 26(1987) 2582–2585.CrossRefGoogle Scholar
  72. 72.
    M.J. Duer, N.D. Fenton and M. Gerloch, Int. Rev. Phys. Chem. 9(1990) 227–280.Google Scholar
  73. 73.
    D. Reinen, M. Atanasov and S.-L. Lee, Coord. Chem. Rev. 175(1998) 91–158.CrossRefGoogle Scholar
  74. 74.
    L.E. Orgel, J. Chem. Soc. 1961, 3683.Google Scholar
  75. 75.
    A. Ceulemans, M. Dendooven and L.G. Vanquickenborne, Inorg. Chem. 24(1985) 1153.CrossRefGoogle Scholar
  76. 76.
    A. Ceulemans, M. Dendooven and L.G. Vanquickenborne, Inorg. Chem. 24(1985) 1159.CrossRefGoogle Scholar
  77. 77.
    A. Ceulemans, R. Debuyst, F. Dejehet, G.S.D. King, M. Vanhecke and L.G. Vanquickenborne, J. Phys. Chem. 94(1990) 105–113.CrossRefGoogle Scholar
  78. 78.
    M.R. Bukowski, P. Comba, C. Limberg, M. Merz, L. Que, Jr, T. Wistuba, Angew. Chem. Int. Ed. 43(2004) 1283–1287.CrossRefGoogle Scholar
  79. 79.
    M.R. Bukowski, P. Comba, A. Lienke, C. Limberg, C. Lopez de Laorden, R. Mas-Balleste, M. Merz, L. Que, Jr, Angew. Chem. Int. Ed. 118(2006) 3524.Google Scholar
  80. 80.
    P. Comba and G. Rajaraman, submitted for publication.Google Scholar
  81. 81.
    J.-U. Rohde, J.-H. In: M.H. Lim, W.W. Brennessel, M.R. Bukowski, A. Stubna, E.Münck, W. Nam and L. Que, Jr., Science 299(2003) 1037–1039.Google Scholar
  82. 82.
    A. Decker, J.-U. Rohde, L. Que, Jr. and E.I. Solomon, J. Am. Chem. Soc. 126(2004) 5378–5379.Google Scholar
  83. 83.
    F. Neese, J. Inorg. Biochem. 100(2006) 716–726.CrossRefGoogle Scholar
  84. 84.
    J.C. Schöneboom, F. Neese and W. Thiel, J. Am. Chem. Soc. 127(2005) 5840–5853.CrossRefGoogle Scholar
  85. 85.
    C.K. Jørgensen, Struct. Bond. 1(1966) 3–31.CrossRefGoogle Scholar
  86. 86.
    C. Anthon, J. Bendix and C.E. Schäffer, Inorg. Chem. 42(2003) 4088.CrossRefGoogle Scholar
  87. 87.
    C. Anthon, J. Bendix and C.E. Schäffer, Inorg. Chem. 43(2004) 7882.CrossRefGoogle Scholar
  88. 88.
    A. Borel, L. Helm and C. Daul, Chem. Phys. Lett. 383(2004) 584.CrossRefGoogle Scholar
  89. 89.
    L. Petit, A. Borel, C. Daul, P. Maldivi and C. Adamo, Inorg. Chem. 45(2006) 7382–7388.CrossRefGoogle Scholar
  90. 90.
    M. Atanasov, C. Daul and H.U. Güdel, In: J. Leszczynski (ed) Computational Chemistry: Reviews of Current Trends, Vol.9, World Scientific, New Jersey USA, 2005, p. 153–194.Google Scholar
  91. 91.
    M. Atanasov, P. Comba and C.A. Daul, J. Phys. Chem. A, 2006, 110(2006) 13332–13340.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Mihall Atanasov
  • Peter Comba
  • Claude A. Daul
  • Frank Neese

There are no affiliations available

Personalised recommendations