Skip to main content

Nectar consumers

  • Chapter
Nectaries and Nectar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, L.S., & Bronstein, J.L. (2004). Attracting antagonists: does floral nectar increase leaf herbivory? Ecology, 85, 1519-1526.

    Article  Google Scholar 

  • Alm, J., Ohnmeiss, T.E., Lanza, J., & Vriesenga, L. (1990). Preference of cabbage white but-terflies and honey bees for nectar that contains amino acids. Oecologia, 84, 53-57

    Article  Google Scholar 

  • Ananthakrishnan, T.N., & Gopinathan, K. (1998). Nectar utilization and pollination potential of thrips in relation to some Asteraceae. In: B. Bahadur (Ed.), Nectary biology (pp. 163-177). Nagpur, India: Dattsons.

    Google Scholar 

  • Arizmendi, M.C., Dominguez, C.A., & Dirzo, R. (1996). The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Functional Ecol-ogy, 10, 119-127.

    Article  Google Scholar 

  • Armstrong, J.A.  (1979). Biotic pollination mechanisms in the Australian flora—a review. New Zealand Journal of Botany, 17, 467-508.

    Google Scholar 

  • Bachman, W.W., & Waller, G.D. (1977). Honeybee responses to sugar solutions of different compositions. Journal of Apicultural Research, 16, 165-169.

    CAS  Google Scholar 

  • Baker, H.G. (1975). Sugar concentrations in nectars from hummingbird flowers. Biotropica, 7, 37-41.

    Article  Google Scholar 

  • Baker, H.G., & Baker, I. (1982). Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: M.H. Nitecki (Ed.), Biochemical aspects of evolutionary biology (pp. 131-171). Chicago: University of Chicago Press.

    Google Scholar 

  • Baker, H.G., & Baker, I. (1983). Floral nectar sugar constituents in relation to pollinator type. In: C.E. Jones, & R.J. Little (Eds.), Handbook of experimental pollination biology (pp. 117-141). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Baker, H.G., Baker, I., & Hodges, S.A. (1998). Sugar composition of nectar and fruits con-sumed by birds and bats in the tropics and subtropics. Biotropica, 30, 559-586.

    Article  Google Scholar 

  • Baker, H.G., Opler, P.A., &Baker, I. (1978). A comparison of the amino acid complements of floral and extrafloral nectars. Botanical Gazette, 139, 322-332.

    Article  CAS  Google Scholar 

  • Barker, R.J., & Lehner, Y. (1974). Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.). Journal of Experimental Zoology, 187, 277-286.

    Article  CAS  Google Scholar 

  • Baylis, M., & Pierce, N.E. (1993). The effects of ant mutualism on the foraging and diet of lycaenid caterpillars. In: N.E. Stamp, & T.M. Casey (Eds.), Caterpillars: ecological and evolutionary constraints on foraging (pp. 404-421). New York: Chapman & Hall.

    Google Scholar 

  • Beardsley, P.M., Yen, A., & Olmstead, R.G. (2003). AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution, 57, 1397-1410.

    CAS  PubMed  Google Scholar 

  • Beck, J., Mühlenberg, E., & Fiedler, K. (1999). Mud-puddling behavior in tropical butterflies: in search of proteins or minerals? Oecologia, 119, 140-148.

    Article  Google Scholar 

  • Beggs, J. (2001). The ecological consequences of social wasps (Vespula spp) invading an ecosystem that has an abundant carbohydrate resource. Biological Conservation, 99, 17-28.

    Article  Google Scholar 

  • Bernardello, L., Galetto, L., & Rodriguez, I.G. (1994). Reproductive biology, variability of nectar features and pollination of Combretum fruticosum (Combretaceae) in Argentina. Botanical Journal of the Linnean Society, 114, 293-308.

    Article  Google Scholar 

  • Bertsch, A. (1984). Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load? Oecologia, 62, 325-336.

    Article  Google Scholar 

  • Beuchat, C.A., Calder, W.A., & Braun, E.J. (1990). The integration of osmoregulation and energy balance in hummingbirds. Physiological Zoology, 63, 1059-1081.

    Google Scholar 

  • Biesmeijer, J.C., Richter, J.A.P., Smeets, M.A.J.P., & Sommeijer, M.J. (1999). Niche differ-entiation in nectar-collecting stingless bees: the influence of morphology, floral choice and interference competition. Ecological Entomology, 24, 380-388.

    Article  Google Scholar 

  • Blem, C.R., Blem, L.B., Felix, J., & Van Gelder, J. (2000). Rufous hummingbird sucrose preference: precision of selection varies with concentration. Condor, 102, 235-238.

    Article  Google Scholar 

  • Blüthgen, N., & Fiedler, K.  (2004a). Competition for composition: lessons from nectar-feeding ant communities. Ecology, 85, 1479-1485.

    Article  Google Scholar 

  • Blüthgen, N., & Fiedler, K. (2004b). Preferences for sugars and amino acids and their condi-tionality in a diverse nectar-feeding ant community. Journal of Animal Ecology, 73, 155-166.

    Article  Google Scholar 

  • Blüthgen, N., Gottsberger, G., & Fiedler, K. (2004). Sugar and amino acid composition of ant-attended nectar and honeydew sources from an Australian rainforest. Austral Ecology, 29, 418-429.

    Article  Google Scholar 

  • Boggs, C.L. (1987). Ecology of nectar and pollen feeding in Lepidoptera. In: F.Slansky,& J.G. Rodriguez (Eds.), Nutritional ecology of insects, mites and spiders (pp. 369-391).New York: Wiley.

    Google Scholar 

  • Boggs, C.L. (1997). Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology, 78, 192-202.

    Article  Google Scholar 

  • Boggs, C.L., Smiley, J.T., & Gilbert, L.E. (1981). Patterns of pollen exploitation by Heli-conius butterflies. Oecologia, 48, 284-289.

    Article  Google Scholar 

  • Bolten, A.B., & Feinsinger, P. (1978). Why do hummingbird flowers secrete dilute nectar? Biotropica, 10, 307-309.

    Article  Google Scholar 

  • Bond, H.W., & Brown, W.L. (1979). The exploitation of floral nectar in Eucalyptus incras-sata by honeyeaters and honeybees. Oecologia, 44, 105-111.

    Article  Google Scholar 

  • Borrell, B.J. (2004). Suction feeding in orchid bees (Apidae: Euglossini). Proceedings of the Royal Society of London B (Suppl.), 271, S164-S166.

    Article  Google Scholar 

  • Bradshaw, F.J., & Bradshaw, S.D. (2001). Maintenance nitrogen requirement of an obligate nectarivore, the honey possum, Tarsipes rostratus. Journal of Comparative Physiology B, 171, 59-67.

    Article  CAS  Google Scholar 

  • Bradshaw, H.D., & Schemske, D.W. (2003). Allele substitution at a flower colour locus pro-duces a pollinator shift in monkeyflowers. Nature, 426, 176-178.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw, S.D., & Bradshaw, F.J. (1999). Field energetics and the estimation of pollen and nectar intake in the marsupial honey possum, Tarsipes rostratus, in heathland habitats of South-Western Australia. Journal of Comparative Physiology B, 169, 569-580.

    Article  CAS  Google Scholar 

  • Brncic, D. (1966). Ecological and cytogenetic studies of Drosophila flavopilosa, a neotropical species living in Cestrum flowers. Evolution, 20, 16-29.

    Article  Google Scholar 

  • Brown, J.H., Calder, W.A., & Kodric-Brown, A.  (1978). Correlates and consequences of body size in nectar-feeding birds. American Zoologist, 18, 687-700.

    Google Scholar 

  • Buchmann, S.L. (1987). The ecology of oil flowers and their bees. Annual Review of Ecology and Systematics, 18, 343-369.

    Article  Google Scholar 

  • Búrquez, A., & Corbet, S.A. (1998). Dynamics of production and exploitation of nectar: les-sons from Impatiens glandulifera Royle. In: B. Bahadur (Ed.), Nectary biology (pp. 130-152). Nagpur, India: Dattsons.

    Google Scholar 

  • Buys, B. (1987). Competition for nectar between Argentine ants (Iridomyrmex humilis) and honeybees  (Apis mellifera) on black ironbark  (Eucalyptus sideroxylon). South African Journal of Zoology, 22, 173-174.

    Google Scholar 

  • Calder, W.A. (1979). On the temperature-dependency of optimal nectar concentrations for birds. Journal of Theoretical Biology, 78, 185-196.

    Article  PubMed  Google Scholar 

  • Calder, W.A., & Hiebert, S.M. (1983). Nectar feeding, diuresis, and electrolyte replacement of hummingbirds. Physiological Zoology, 56, 325-334.

    CAS  Google Scholar 

  • Carpenter, F.L. (1976). Plant-pollinator interactions in Hawaii: pollination energetics of Met-rosideros collina (Myrtaceae). Ecology, 57, 1125-1144.

    Article  Google Scholar 

  • Carter, C., Shafir, S., Yehonatan, L., Palmer, R.G., & Thornburg, R. (2006). A novel role for proline in plant floral nectars. Naturwissenschaften, 93, 72-79.

    Article  CAS  PubMed  Google Scholar 

  • Carthew, S.M., & Goldingay, R.L. (1997). Non-flying mammals as pollinators. Trends in Ecology and Evolution, 12, 104-108.

    Article  Google Scholar 

  • Castellanos, M.C., Wilson, P., & Thomson, J.D. (2002). Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany, 89, 111-118.

    Article  Google Scholar 

  • Castro, I., & Robertson, A.W. (1997). Honeyeaters and the New Zealand forest flora: the utilisation and profitability of small flowers. New Zealand Journal of Ecology, 21, 169-179.

    Google Scholar 

  • Chen, L., & Fadamiro, H.Y. (2006). Comparing the effects of five naturally occurring mono-saccharide and oligosaccharide sugars on longevity and carbohydrate nutrient levels of a parasitic phorid fly, Pseudacteon tricuspis. Physiological Entomology, 31, 46-56. Chittka, L., Thomson, J.D., & Waser, N.M. (1999). Flower constancy, insect psychology, and plant evolution. Naturwissenschaften, 86, 361-377.

    Google Scholar 

  • Chittka, L., & Waser, N.M. (1997). Why red flowers are not invisible to bees. Israel Journal of Plant Sciences, 45, 169-183.

    Google Scholar 

  • Choh, Y., Kugimiya, S., & Takabayashi, J. (2006). Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia, 147, 455-460.

    Article  PubMed  Google Scholar 

  • Churchill, D.M., & Christensen, P.  (1970). Observations on pollen harvesting by brush-tongued lorikeets. Australian Journal of Zoology, 18, 427-437.

    Article  Google Scholar 

  • Coll, M., & Guershon, M. (2002). Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology, 47, 267-297.

    Article  CAS  PubMed  Google Scholar 

  • Colwell, R.K. (1995). Effects of nectar consumption by the hummingbird flower mite Proc-tolaelaps kirmsei on nectar availability in Hamelia patens. Biotropica, 27, 206-217.

    Article  Google Scholar 

  • Corbet, S.A. (2006). A typology of pollination systems: implications for crop management and the conservation of wild plants. In: N.M. Waser, & J. Ollerton (Eds.), Plant-pollinator interactions: from specialization to generalization (pp. 315-340). Chicago: University of Chicago Press.

    Google Scholar 

  • Corbet, S.A., Unwin, D.M., & Prys-Jones, O.E. (1979). Humidity, nectar and insect visits to flowers, with special reference to Crataegus, Tilia and Echium. Ecological Entomology, 4, 9-22.

    Article  Google Scholar 

  • Corbet, S.A., & Willmer, P.G. (1980). Pollination of the yellow passionfruit: nectar, pollen and carpenter bees. Journal of Agricultural Science (Cambridge), 95, 655-666.

    Article  Google Scholar 

  • Cotton, P.A. (1996). Body size and the ecology of hummingbirds. Symposium of the Zoologi-cal Society of London, 69, 239-258.

    Google Scholar 

  • Cresswell, J.E., & Galen, C. (1991). Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. American Natural-ist, 138, 1342-1353.

    Article  Google Scholar 

  • Crome, F.H.J., & Irvine, A.K. (1986). “Two bob each way”: the pollination and breeding system of the Australian rainforest tree Syzygium comiflorum (Myrtaceae). Biotropica, 18, 115-125.

    Article  Google Scholar 

  • Dafni, A., Bernhardt, P., Shmida, A., Ivri, Y., Greenbau, S., O’Toole, C., & Losito, L. (1990). Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel Journal of Botany, 39, 81-92.

    Google Scholar 

  • Dafni, A., Kevan, P.G., & Husband, B.C. (2005). Practical pollination biology. Cambridge, Ontario: Enviroquest.

    Google Scholar 

  • Devoto, M., Medan, D., & Montaldo, N.H. (2005). Patterns of interaction between plants and pollinators along an environmental gradient. Oikos, 109, 461-472.

    Article  Google Scholar 

  • Downes, W.L., & Dahlem, G.A. (1987). Keys to the evolution of Diptera: role of Homoptera. Environmental Entomology, 16, 847-854.

    Google Scholar 

  • Duncan, F.D., & Lighton, J.R.B. (1994). The burden within: the energy cost of load carriage in the honeypot ant, Myrmecocystus. Physiological Zoology, 67, 190-203.

    Google Scholar 

  • Dupont, Y.L., Hansen, D.M., Rasmussen, J.T., & Olesen, J.M. (2004). Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Functional Ecology, 18, 670-676.

    Article  Google Scholar 

  • Edgecomb, R.S., Harth, C.E., & Schneiderman, A.M. (1994). Regulation of feeding behav-iour in adult Drosophila melanogaster varies with feeding regime and nutritional state. Journal of Experimental Biology, 197, 215-235.

    CAS  PubMed  Google Scholar 

  • Eifler, D.A. (1995). Patterns of plant visitation by nectar-feeding lizards. Oecologia, 101, 228-233.

    Article  Google Scholar 

  • Englund, R. (1993). Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae). Option for long-distance pollen dispersal in a temperate shrub. Oecologia, 94, 295-302.

    Article  Google Scholar 

  • Erhardt, A., & Rusterholz, H.-P. (1998). Do Peacock butterflies (Inachis io L.) detect and prefer nectar amino acids and other nitrogenous compounds? Oecologia, 117, 536-542.

    Article  Google Scholar 

  • Evans, M.R. (1996). Nectar and flower production of Lobelia telekii inflorescences, and their influence on territorial behaviour of the scarlet-tufted malachite sunbird (Nectarinia johns-toni). Biological Journal of the Linnean Society, 57, 89-105.

    Google Scholar 

  • Faegri, K., & van der Pijl, L. (1979). The principles of pollination ecology, 3rd edn. Oxford: Pergamon Press.

    Google Scholar 

  • Farina, W.M., & Wainselboim, A.J. (2001). Changes in the thoracic temperature of honeybees while receiving nectar from foragers collecting at different reward rates. Journal of Ex-perimental Biology, 204, 1653-1658.

    CAS  Google Scholar 

  • Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004).Pollina-tion syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics, 35, 375-403.

    Article  Google Scholar 

  • Ferry, C., & Corbet, S.A. (1996). Water collection by bumble bees. Journal of Apicultural Research, 35, 120-122.

    Google Scholar 

  • Fishbein, M., & Venable, D.L. (1996). Diversity and temporal change in the effective pollina-tors of Asclepias tuberosa. Ecology, 77, 1061-1073.

    Article  Google Scholar 

  • Fleming, P.A., Hartman Bakken, B., Lotz, C.N., & Nicolson, S.W. (2004). Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Functional Ecology, 18, 223-232.

    Article  Google Scholar 

  • Fleming, P.A., Hofmeyr, S.D., Nicolson, S.W., & du Toit, J.T. (2006). Are giraffes pollina-tors or flower predators of Acacia nigrescens in Kruger National park, South Africa? Journal of Tropical Ecology, 22, 1-7.

    Article  Google Scholar 

  • Fleming, P.A., & Nicolson, S.W. (2002). How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators? Oecologia, 132, 361-368.

    Article  Google Scholar 

  • Fleming, P.A., & Nicolson, S.W. (2003). Osmoregulation in an avian nectarivore, the white-bellied sunbird Nectarinia talatala: response to extremes of diet concentration. Journal of Experimental Biology, 206, 1845-1854.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, T.H. (1992). How do fruit- and nectar-feeding birds and mammals track their food resources? In: M.D. Hunter, T. Ohguishi, & P.W. Price (Eds.), Effects of resource distribu-tion on animal-plant interactions (pp. 355-391). New York: Academic Press.

    Google Scholar 

  • Fleming, T.H., Nunez, R.A., &da Silveira Lobo Sternberg, L.S. (1993). Seasonal changes in the diets of migrant and non-migrant nectarivorous bats as revealed by carbon stable iso-tope analysis. Oecologia, 94, 72-75.

    Article  Google Scholar 

  • Fleming, T.H., Sahley, C.T., Holland, J.N., Nason, J.D., & Hamrick, J.L. (2001). Sonoran Desert columnar cacti and the evolution of generalised pollination systems. Ecological Monographs, 71, 511-530.

    Article  Google Scholar 

  • Ford, H.A. (1985). Nectarivory and pollination by birds in southern Australia and Europe. Oikos, 44, 127-131.

    Article  Google Scholar 

  • Galetto, L., & Bernardello, G.  (2004). Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Annals of Botany, 94, 269-280.

    Article  CAS  PubMed  Google Scholar 

  • Galliot, C., Stuurman, J., & Kuhlemeier, C. (2006). The genetic dissection of floral pollina-tion syndromes. Current Opinion in Plant Biology, 9, 78-82.

    Article  CAS  PubMed  Google Scholar 

  • Gautier-Hion, A. & Maisels, F. (1994). Mutualism between a leguminous tree and large Afri-can monkeys as pollinators. Behavioral Ecology and Sociobiology, 34, 203-210.

    Article  Google Scholar 

  • Gaze, P.D., & Clout, M.N. (1983). Honeydew and its importance to birds in beech forests of South Island, New Zealand. New Zealand Journal of Ecology, 6, 33-37.

    Google Scholar 

  • Ge, Y.-X., Angenent, G.C., Wittich, P.E., Peters, J., Franken, J., Busscher, M., Zhang, L.-M., Dahlhaus, E., Kater, M.M., Wullems, G.J., & Creemers-Molenaar, T. (2000). NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant Journal, 24, 725-734.

    Article  PubMed  Google Scholar 

  • Ghazoul, J. (2001). Can floral repellents pre-empt potential ant-plant conflicts? Ecology Let-ters, 4, 295-299.

    Article  Google Scholar 

  • Gilbert, F.S. (1981). Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecological Entomology, 6, 245-262.

    Article  Google Scholar 

  • Gmeinbauer, R., & Crailsheim, K. (1993). Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. Journal of Insect Physiology, 39, 959-967

    Article  CAS  Google Scholar 

  • Godley, E.J. (1979). Flower biology in New Zealand. New Zealand Journal of Botany, 17, 441-466.

    Google Scholar 

  • Goldblatt, P., & Manning, J.C. (2000). The long-proboscid fly pollination system in southern Africa. Annals of the Missouri Botanical Garden, 87, 146-170.

    Article  Google Scholar 

  • Goldblatt, P., & Manning, J.C. (2006). Radiation of pollination systems in the Iridaceae of sub-Saharan Africa. Annals of Botany, 97, 317-344.

    Article  PubMed  Google Scholar 

  • Goldblatt, P., Manning, J.C., & Bernhardt, P. (1999). Evidence of bird pollination in Iridaceae of southern Africa. Adansonia, 21, 25-40.

    Google Scholar 

  • Goldblatt, P., Manning, J.C., & Bernhardt, P. (2001). Radiation of pollination systems in Gladiolus (Iridaceae: Crocoideae) in southern Africa. Annals of the Missouri Botanical Garden, 88, 713-734.

    Article  Google Scholar 

  • Goulson, D. (2003). Effects of introduced bees on native ecosystems. Annual Review of Ecol-ogy, Evolution and Systematics, 34, 1-26.

    Article  Google Scholar 

  • Grant, V. (1993). Origin of floral isolation between ornithophilous and sphingophilous plant species. Proceedings of the National Academy of Sciences USA, 90, 7729-7733.

    Article  CAS  Google Scholar 

  • Grimaldi, D. (1999). The co-radiations of pollinating insects and angiosperms in the Creta-ceous. Annals of the Missouri Botanical Garden, 86, 373-406.

    Article  Google Scholar 

  • Grimaldi, D., & Engel, M.S. (2005). Evolution of the insects. Cambridge: Cambridge Univer-sity Press.

    Google Scholar 

  • Guerenstein, P.G., Yepez, E.A., van Haren, J., Williams, D.G., & Hildebrand, J.G. (2004). Floral CO2 emission may indicate food abundance to nectar-feeding moths. Naturwissen-schaften, 91, 329-333.

    Article  CAS  Google Scholar 

  • Hainsworth, F.R., Fisher, G., & Precup, E. (1990). Rates of energy processing by blowflies: the uses for a joule vary with food quality and quantity. Journal of Experimental Biology, 150, 257-268.

    CAS  PubMed  Google Scholar 

  • Hainsworth, F.R., Precup, E., & Hamill, T. (1991). Feeding, energy processing rates and egg production in painted lady butterflies. Journal of Experimental Biology, 156, 249-265.

    Google Scholar 

  • Hainsworth, F.R., & Wolf, L.L. (1976). Nectar characteristics and food selection by hum-mingbirds. Oecologia, 25, 101-113.

    Article  Google Scholar 

  • Hansen, D.M., Beer, K., & Müller, C.B. (2006). Mauritian coloured nectar no longer a mys-tery: a visual signal for lizard pollinators. Biology Letters, 2, 165-168.

    Article  PubMed  Google Scholar 

  • Hansen, D.M., Olesen, J.M., & Jones, C.G. (2002). Trees, birds and bees in Mauritius: ex-ploitative competition between introduced honey bees and endemic nectarivorous birds? Journal of Biogeography, 29, 721-734.

    Article  Google Scholar 

  • Harder, L.D. (1986). Effects of nectar concentration and flower depth on flower handling efficiency of bumble bees. Oecologia, 69, 309-315.

    Article  Google Scholar 

  • Hartman Bakken, B., & Sabat, P. (2006). Gastrointestinal and renal responses to water intake in the green-backed firecrown (Sephanoides sephanoides), a South American humming-bird.  American  Journal  of  Physiology:  Regulatory,  Integrative  and  Comparative Physiology, 291, R830-R836.

    Google Scholar 

  • Haslett, J.R. (1989). Adult feeding by holometabolous insects: pollen and nectar as comple-mentary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia, 81, 361-363.

    Google Scholar 

  • Heil, M., Fiala, B., Baumann, B., & Linsenmair, K.E. (2000). Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology, 14, 749-757.

    Article  Google Scholar 

  • Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W., & Linsenmair, K.E. (2001). Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sci-ences USA, 98, 1083-1088.

    Article  CAS  Google Scholar 

  • Heil, M., Rattke, J., & Boland, W. (2005). Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science, 308, 560-563.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich, B. (1975). Energetics of pollination. Annual Review of Ecology and Systematics, 6, 139-170.

    Article  Google Scholar 

  • Heinrich, B. (1993). The hot-blooded insects: strategies and mechanisms of thermoregulation. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Heinrich, B., & McClain, E. (1986). “Laziness” and hypothermia as a foraging strategy in flower scarabs (Coleoptera: Scarabaeidae). Physiological Zoology, 59, 273-282.

    Google Scholar 

  • Hendrichs, J., Cooley, S.S., & Prokopy, R.J. (1992). Post-feeding bubbling behaviour in fluid-feeding Diptera: concentration of crop contents by oral evaporation of excess water. Physiological Entomology, 17, 153-161.

    Google Scholar 

  • Herrera, C.M. (1988). Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biological Journal of the Linnean Society, 35, 95-125.

    Article  Google Scholar 

  • Herrera, C.M. (1996). Floral traits and plant adaptation to insect pollinators: a devil’s advo-cate approach. In: D.G. Lloyd, & S.C.H. Barrett (Eds.), Floral biology: studies on floral evolution in animal-pollinated plants (pp. 65-87). New York: Chapman & Hall.

    Google Scholar 

  • Herrera, L.G. (1999). Preferences for different sugars in Neotropical nectarivorous and frugivorous bats. Journal of Mammalogy, 80, 683-688.

    Article  Google Scholar 

  • Hingston, A.B., & McQuillan, P.B. (2000). Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecology, 25, 600-609.

    Article  Google Scholar 

  • Hocking, B. (1968). Insect-flower associations in the high Arctic with special reference to nectar. Oikos, 19, 359-388.

    Article  Google Scholar 

  • Hunt, J.H., Baker, I., & Baker, H.G. (1982). Similarity of amino acids in nectar and larval saliva: the nutritional basis for trophallaxis in social wasps. Evolution, 36, 1318-1322.

    Article  CAS  Google Scholar 

  • Idris, A.B., & Grafius, E. (1995). Wildflowers as nectar sources for Diadegma insulare (Hy-menoptera:   Ichneumonidae),   a   parasitoid   of   diamondback   moth (Lepidoptera: Yponomeutidae). Environmental Entomology, 24, 1726-1735.

    Google Scholar 

  • Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253.

    Article  Google Scholar 

  • Inouye, D.W., & Waller, G.D. (1984). Responses of honeybees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology, 65, 618-625.

    Article  CAS  Google Scholar 

  • Irwin, R.E., Brody, A.K., & Waser, N.M. (2001). The impact of floral larceny on individuals, populations, and communities. Oecologia, 129, 161-168.

    Article  Google Scholar 

  • Jackson, R.R., Pollard, S.D., Nelson, X.J., Edwards, G.B., & Barrion, A.T. (2001). Jumping spiders (Araneae: Salticidae) that feed on nectar. Journal of Zoology, London, 255, 25-29.

    Article  Google Scholar 

  • Janson, C.H., Terborgh, J., & Emmons, L.H.  (1981). Non-flying mammals as pollinating agents in the Amazonian forest. Biotropica, 13, 1-6.

    Article  Google Scholar 

  • Jersáková, J., & Johnson, S.D. (2006). Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia, 147, 60-68.

    Article  PubMed  Google Scholar 

  • Jervis, M.A., Kidd, N.A.C., Fitton, M.G., Huddleston, T., & Dawah, H.A. (1993). Flower-visiting by hymenopteran parasitoids. Journal of Natural History, 27, 67-105.

    Article  Google Scholar 

  • Johnson, S.A., & Nicolson, S.W. (2001). Pollen digestion by flower-feeding Scarabaeidae: protea beetles (Cetoniini) and monkey beetles (Hopliini). Journal of Insect Physiology, 47, 725-733.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, S.D., Ellis, A., & Dötterl, S. (2007). Specialization for pollination by beetles and wasps: the role of lollipop hairs and fragrance in Satyrium microrrhynchum (Orchidaceae). American Journal of Botany, 94, 47-55.

    Article  CAS  Google Scholar 

  • Johnson, S.D., Hargreaves, A.L., & Brown, M. (2006). Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology, 87, 2709-2716.

    Article  PubMed  Google Scholar 

  • Johnson, S.D., Linder, H.P., & Steiner, K.E. (1998). Phylogeny and radiation of pollination systems in Disa (Orchidaceae). American Journal of Botany, 85, 402-411.

    Article  Google Scholar 

  • Johnson, S.D., & Steiner, K.E. (1997). Long-tongued fly pollination and divergence in spur length in the Disa draconis complex (Orchidaceae). Evolution, 51, 45-53.

    Article  Google Scholar 

  • Johnson, S.D., & Steiner, K.E. 2000. Generalization versus specialization in plant pollina-tion systems. Trends in Ecology and Evolution, 15, 140-143.

    Article  PubMed  Google Scholar 

  • Josens, R.B., & Farina, W.M. (2001). Nectar feeding by the hovering hawkmoth Macroglos-sum stellatarum: intake rate as a function of viscosity and concentration of sucrose solutions. Journal of Comparative Physiology A, 187, 661-665.

    Article  CAS  Google Scholar 

  • Josens, R.B., Farina, W.M., & Roces, F. (1998). Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. Journal of Insect Physi-ology, 44, 579-585.

    Article  CAS  Google Scholar 

  • Josens, R.B., & Roces, F. (2000). Foraging in the ant Camponotus mus: nectar-intake rate and crop filling depend on colony starvation. Journal of Insect Physiology, 46, 1103-1110.

    Article  CAS  PubMed  Google Scholar 

  • Kaczorowski, R.L., Gardener, M.C., & Holtsford, T.P. (2005). Nectar traits in Nicotiana sec-tion  Alatae (Solanaceae)  in  relation  to  floral  traits,  pollinators,  and  mating  system. American Journal of Botany, 92, 1270-1283.

    Article  Google Scholar 

  • Kearns, C.A. (1992). Anthophilous fly distribution across an elevation gradient. American Midland Naturalist, 127, 172-182.

    Article  Google Scholar 

  • Kearns, C.A., & Inouye, D.W. (1993). Techniques for pollination biologists. Niwot, Colo-rado: University Press of Colorado.

    Google Scholar 

  • Kelber, A. (2003). Sugar preferences and feeding strategies in the hawkmoth Macroglossum stellatarum. Journal of Comparative Physiology A, 189, 661-666.

    Article  CAS  Google Scholar 

  • Kevan, P.G., & Baker, H.G. (1983). Insects as flower visitors and pollinators. Annual Review of Entomology, 28, 407-453.

    Article  Google Scholar 

  • Kim, Y.S., & Smith, B.H. (2000). Effect of an amino acid on feeding preferences and learning behavior in the honey bee, Apis mellifera. Journal of Insect Physiology, 46, 793-801.

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver, J.G., & Daniel, T.L. (1995). Mechanics of food handling by fluid-feeding insects. In: R.F. Chapman, & G. de Boer (Eds.), Regulatory mechanisms in insect feeding (pp. 32-73). New York: Chapman & Hall.

    Google Scholar 

  • Klinkhamer, P.G.L., & De Jong, T.J. (1993). Attractiveness to pollinators: a plant’s dilemma. Oikos, 66, 180-184.

    Article  Google Scholar 

  • Knox, R.B., Kenrick, J., Bernhardt, P., Marginson, R., Beresford, G., Baker, I., & Baker, H.G. (1985). Extrafloral nectaries as adaptations for bird pollination in Acacia terminalis. American Journal of Botany, 72, 1185-1196.

    Google Scholar 

  • Koptur, S. (1992). Extrafloral nectary-mediated interactions between insects and plants. In: E. Bernays (Ed.), Insect-plant interactions volume IV (pp. 81-129). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Koptur, S. (1994). Floral and extrafloral nectars of Costa Rican Inga trees: a comparison of their constituents and composition. Biotropica, 26, 276-284.

    Article  Google Scholar 

  • Kovac, H., & Schmaranzer, S. (1996). Thermoregulation of honeybees (Apis mellifera) forag-ing in spring and summer at different plants. Journal of Insect Physiology, 42, 1071-1076.

    Article  CAS  Google Scholar 

  • Krenn, H.W., Plant, J.D., & Szucsich, N.U. (2005). Mouthparts of flower-visiting insects. Arthropod Structure and Development, 34, 1-40.

    Article  Google Scholar 

  • Kress, W.J., Schatz, G.E., Andrianifahanana, M., & Morland, H.S.  (1994). Pollination of Ravenala madagascariensis (Strelitziaceae) by lemurs in Madagascar: evidence for an ar-chaic coevolutionary system? American Journal of Botany, 81, 542-551.

    Article  Google Scholar 

  • Langenberger, M.W., & Davis, A.R. (2002). Temporal changes in floral nectar production, reabsorption and composition associated with dichogamy in annual caraway (Carum carvi; Apiaceae). American Journal of Botany, 89, 1588-1598.

    Article  Google Scholar 

  • Lanza, J. (1991). Response of fire ants (Formicidae: Solenopsis invicta and S. geminata) to artificial nectars with amino acids. Ecological Entomology, 16, 203-210.

    Article  Google Scholar 

  • Lara, C., & Ornelas, J.F. (2002). Flower mites and nectar production in six hummingbird-pollinated plants with contrasting flower longevities. Canadian Journal of Botany, 80, 1216-1229.

    Article  Google Scholar 

  • Larson, B.M.H., Kevan, P.G., & Inouye, D.W. (2001). Flies and flowers: taxonomic diversity of anthophiles and pollinators. Canadian Entomologist, 133, 439-465.

    Article  Google Scholar 

  • Law, B.S. (1992). The maintenance nitrogen requirements of the Queensland blossom bat (Syconycteris australis) on a sugar/pollen diet: is nitrogen a limiting resource? Physiologi-cal Zoology, 65, 634-648.

    CAS  Google Scholar 

  • Law, B.S. (1995). The effect of energy supplementation on the local abundance of the com-mon blossom bat, Syconycteris australis, in south-eastern Australia. Oikos, 72, 42-50.

    Article  Google Scholar 

  • Law, B.S., & Lean, M. (1999). Common blossom bats (Syconycteris australis) as pollinators in fragmented Australian tropical rainforest. Biological Conservation, 91, 201-212.

    Article  Google Scholar 

  • Lindauer, M. (1948). Über die Einwirkung von Duft- und Geschmackstoffen sowie anderer Faktoren auf die Tänze der Bienen. Zeitschrift fuer Vergleichende Physiologie, 31, 348-412.

    Google Scholar 

  • Liu, A.-Z., Li, D.-Z., Wang, H., & Kress, W.J. (2002). Ornithophilous and chiropterophilous pollination in Musa itinerans  (Musaceae), a pioneer species in tropical rain forests of Yunnan, southwestern China. Biotropica, 34, 254-260.

    Google Scholar 

  • Lotz, C.N., Martínez del Rio, C., & Nicolson, S.W. (2003). Hummingbirds pay a high cost for a warm drink. Journal of Comparative Physiology B, 173, 455-462.

    Article  CAS  Google Scholar 

  • Lotz, C.N., & Schondube, J.E. (2006). Sugar preferences in nectar- and fruit-eating birds: behavioral patterns and physiological causes. Biotropica, 38, 3-15.

    Google Scholar 

  • Louw, G.N., & Nicolson, S.W. (1983). Thermal, energetic and nutritional considerations in foraging and reproduction of the carpenter bee Xylocopa capitata. Journal of the Entomo-logical Society of South Africa, 46, 227-240.

    Google Scholar 

  • Maloof, J.E., & Inouye, D.W. (2000). Are nectar robbers cheaters or mutualists? Ecology, 81, 2651-2661.

    Article  Google Scholar 

  • Markman, S., Pinshow, B., & Wright, J. (2002). The manipulation of food resources reveals sex-specific trade-offs between parental self-feeding and offspring care. Proceedings of the Royal Society of London B, 269, 1931-1938.

    Article  CAS  Google Scholar 

  • Martínez del Rio, C.  (1990). Sugar preferences in hummingbirds: the influence of subtle chemical differences on food choice. Condor, 92, 1022-1030.

    Article  Google Scholar 

  • Martínez del Rio, C., Baker, H.G., & Baker, I. (1992). Ecological and evolutionary implica-tions of digestive processes: bird preferences and the sugar constituents of floral nectar and fruit pulp. Experientia, 48, 544-551.

    Article  Google Scholar 

  • Martínez del Rio, C., Schondube, J.E., McWhorter, T.J., & Herrera, L.G. (2001). Intake re-sponses  in  nectar  feeding  birds:  digestive  and  metabolic  causes,  osmoregulatory consequences, and coevolutionary effects. American Zoologist, 41, 902-915.

    Article  Google Scholar 

  • Martínez del Rio, C., Stevens, B.R., Daneke, D.E., & Andreadis, P.T. (1988). Physiological correlates of preference and aversion for sugars in three species of birds. Physiological Zoology, 61, 222-229.

    Google Scholar 

  • May, P.G. (1985). Nectar uptake rates and optimal nectar concentrations of two butterfly spe-cies. Oecologia, 66, 381-386.

    Article  Google Scholar 

  • Mayr, G. (2004). Old World fossil record of modern-type hummingbirds. Science, 304, 861-864.

    Article  CAS  PubMed  Google Scholar 

  • McDade, L.A., & Weeks, J.A. (2004a). Nectar in hummingbird-pollinated Neotropical plants I: patterns of production and variability in 12 species. Biotropica, 36, 196-215.

    Google Scholar 

  • McDade, L.A., & Weeks, J.A. (2004b). Nectar in hummingbird-pollinated Neotropical plants II: Interactions with flower visitors. Biotropica, 36, 216-230.

    Google Scholar 

  • McWhorter, T.J., Hartman Bakken, B., Karasov, W.H., & Martínez del Rio, C. (2006). Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism. Biology Letters, 2, 131-134.

    Google Scholar 

  • McWhorter, T.J., & Martínez del Rio, C. (1999). Food ingestion and water turnover in hum-mingbirds: how much dietary water is absorbed? Journal of Experimental Biology, 202, 2851-2858.

    PubMed  Google Scholar 

  • McWhorter, T.J., Martínez del Rio, C., & Pinshow, B. (2003). Modulation of ingested water absorption by Palestine sunbirds: evidence for adaptive regulation. Journal of Experimen-tal Biology, 206, 659-666.

    Article  Google Scholar 

  • Mevi-Schütz, J., & Erhardt, A. (2002). Can Inachis io detect nectar amino acids at low con-centrations? Physiological Entomology, 27, 256-260.

    Article  Google Scholar 

  • Mevi-Schütz, J., & Erhardt, A. (2004). Mating frequency influences nectar amino acid prefer-ence of Pieris napi. Proceedings of the Royal Society of London B, 271, 153-158.

    Article  CAS  Google Scholar 

  • Mevi-Schütz, J., & Erhardt, A. (2005). Amino acids in nectar enhance butterfly fecundity: a long-awaited link. American Naturalist, 165, 411-419.

    Article  PubMed  Google Scholar 

  • Miller, W.E. (1996). Population behaviour and adult feeding capability in Lepidoptera. Envi-ronmental Entomology, 25, 213-226.

    Google Scholar 

  • Mitchell, R.J. (2004). Heritability of nectar traits: why do we know so little? Ecology, 85, 1527-1533.

    Article  Google Scholar 

  • Mitchell, R.J., & Paton, D.C. (1990). Effects of nectar volume and concentration on sugar uptake rates of Australian honeyeaters (Meliphagidae). Oecologia, 83, 238-246.

    Article  Google Scholar 

  • Muchhala, N. (2003). Exploring the boundary between pollination syndromes: bats and hum-mingbirds as pollinators of Burmeistera cyclostigmata and B. tenuiflora (Campanulaceae). Oecologia, 134, 373-380.

    PubMed  Google Scholar 

  • Navarro, L. (1999). Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae). Biotropica, 31, 618-625.

    Article  Google Scholar 

  • Ness, J.H. (2003). Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia, 134, 210-218.

    CAS  PubMed  Google Scholar 

  • Nicolson, S.W. (1994). Eucalyptus nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly, Drosophila flavohirta. South African Journal of Science, 90, 75-79.

    Google Scholar 

  • Nicolson, S.W. (1998). The importance of osmosis in nectar secretion and its consumption by insects. American Zoologist, 38, 418-425.

    Google Scholar 

  • Nicolson, S.W. (2002). Pollination by passerine birds: why are the nectars so dilute? Com-parative Biochemistry and Physiology B, 131, 645-652.

    Article  Google Scholar 

  • Nicolson, S.W.  (2006). Water management in nectar-feeding birds. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, R828-R829.

    CAS  PubMed  Google Scholar 

  • Nicolson, S.W., & Fleming, P.A. (2003a). Energy balance in the whitebellied sunbird Nec-tarinia talatala: constraints on compensatory feeding, and consumption of supplementary water. Functional Ecology, 17, 3-9.

    Article  Google Scholar 

  • Nicolson, S.W., & Fleming, P.A. (2003b). Nectar as food for birds: the physiological conse-quences of drinking dilute sugar solutions. Plant Systematics and Evolution, 238, 139-153.

    Google Scholar 

  • Nicolson, S.W., & Louw, G.N. (1982). Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. Journal of Experimental Zoology, 222, 287-296.

    Article  Google Scholar 

  • Nicolson, S.W., & Thornburg, R.T. (2007). Nectar chemistry. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 215-264). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Nieh, J.C., Contrera, F.A.L., Ramírez, S., & Imperatriz-Fonseca, V.L. (2003). Variation in the ability to communicate three-dimensional resource location by stingless bees from differ-ent habitats. Animal Behaviour, 66, 1129-1139.

    Article  Google Scholar 

  • Nieh, J.C., & Sánchez, D. (2005). Effect of food quality, distance and height on thoracic tem-perature in the stingless bee Melipona panamica. Journal of Experimental Biology, 208, 3933-3943.

    Article  PubMed  Google Scholar 

  • Nyhagen, D.F., Kragelund, C., Olesen, J.M., & Jones, C.G. (2001). Insular interactions be-tween lizards and flowers: flower visitation by an endemic Mauritian gecko. Journal of Tropical Ecology, 17, 755-761.

    Article  Google Scholar 

  • O’Brien, D.M. (1999). Fuel use in flight and its dependence on nectar feeding in the hawk-moth Amphion floridensis. Journal of Experimental Biology, 202, 441-451.

    PubMed  Google Scholar 

  • O’Brien, D.M., Fogel, M.L., & Boggs, C.L. (2002). Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the Na-tional Academy of Sciences USA, 99, 4413-4418.

    Article  CAS  Google Scholar 

  • Olesen, J.M., & Valido, A. (2003). Lizards as pollinators and seed dispersers: an island phe-nomenon. Trends in Ecology & Evolution, 18, 177-181.

    Article  Google Scholar 

  • Ollerton, J., Johnson, S.D., & Hingston, A.B. (2006). Geographical variation in diversity and specificity of pollination systems. In: N.M. Waser, & J. Ollerton (Eds.), Plant-pollinator interactions: from specialization to generalization (pp. 283-308). Chicago: University of Chicago Press.

    Google Scholar 

  • Ollerton, J., & Watts, S. (2000). Phenotype space and floral typology: towards an objective assessment of pollination syndromes. Det Norske Videnskaps-Akademi. I. Matematisk Naturvidenskapelige Klasse, Skrifter, Ny Serie, 39, 149-159.

    Google Scholar 

  • Olsson, M., Shine, R., & Ba’k-Olsson, E. (2000). Lizards as a plant’s “hired help”: letting pollinators in and seeds out. Biological Journal of the Linnean Society, 71, 191-202.

    Google Scholar 

  • Ômura, H., & Honda, K. (2003). Feeding responses of adult butterflies, Nymphalis xanthome-las, Kaniska canace and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. Journal of Insect Physiology, 49, 1031-1038.

    Article  CAS  PubMed  Google Scholar 

  • Opler, P.A. (1983). Nectar production in a tropical ecosystem. In: B. Bentley, & T. Elias (Eds.), The biology of nectaries (pp. 30-79). New York: Columbia University Press.

    Google Scholar 

  • Ordano, M., & Ornelas, J.F. (2004). Generous-like flowers: nectar production in two epi-phytic bromeliads and a meta-analysis of removal effects. Oecologia, 140, 495-505.

    Article  PubMed  Google Scholar 

  • Ortega-Olivencia, A., Rodríguez-Riaño, T., Valtueña, F.J., López, J., & Devesa, J.A. (2005). First confirmation of a native bird-pollinated plant in Europe. Oikos, 110, 578-590.

    Article  Google Scholar 

  • Overdorff, D.J. (1992). Differential patterns in flower feeding by Eulemur fulvus rufus and Eulemur rubriventer in Madagascar. American Journal of Primatology, 28, 191-203.

    Article  Google Scholar 

  • Pacini, E., & Nepi, M. (2007). Nectar production and presentation. In: S.W. Nicolson, M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 167-214). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Park, O.W. (1932). Studies on the changes in nectar concentration produced by the honeybee, Apis mellifera. Part I. Changes which occur between the flower and the hive. Research Bulletin of the Iowa Agricultural Experiment Station, 151, 211-243.

    Google Scholar 

  • Paton, D.C. (1980). The importance of manna, honeydew and lerp in the diets of honeyeaters. Emu, 80, 213-226.

    Google Scholar 

  • Patt, J.M., Hamilton, G.C., & Lashomb, J.H. (1997). Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Ento-mologia Experimentalis et Applicata, 83, 21-30.

    Article  Google Scholar 

  • Patt, J.M., Wainright, S.C., Hamilton, G.C., Whittinghill, D., Bosley, K., Dietrick, J., & Lashomb, J.H. (2003). Assimilation of carbon and nitrogen from pollen and nectar by a predaceous larva and its effects on growth and development. Ecological Entomology, 28, 717-728.

    Article  Google Scholar 

  • Paul, J., & Roces, F. (2003). Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology, 49, 347-357.

    Article  CAS  PubMed  Google Scholar 

  • Peakall, R., Handel, S.N., & Beattie, A.J. (1991). The evidence for, and importance of, ant pollination. In: C.R. Huxley, & D.F. Cutler (Eds.), Ant-plant interactions (pp. 421-429). Oxford: Oxford University Press.

    Google Scholar 

  • Percival, M. (1974). Floral ecology of coastal scrub in southeast Jamaica. Biotropica, 6, 104-129.

    Article  Google Scholar 

  • Perret, M., Chautems, A., Spichiger, R., Peixoto, M., & Savolainen, V. (2001). Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Annals of Botany, 87, 267-273.

    Article  CAS  Google Scholar 

  • Petanidou, T., van Laere, A., Ellis, W.N., & Smets, E. (2006). What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos, 115, 155-169.

    Article  CAS  Google Scholar 

  • Pivnick, K.A., & McNeil, J.N. (1985). Effects of nectar concentration on butterfly feeding: measured feeding rates for Thymelicus lineola (Lepidoptera: Hesperiidae) and a general feeding model for adult Lepidoptera. Oecologia, 66, 226-237.

    Google Scholar 

  • Pivnick, K.A., & McNeil, J.N. (1987). Puddling in butterflies: sodium affects reproductive success in Thymelicus lineola. Physiological Entomology, 12, 461-472. Pleasants, J.M. (1983). Nectar production patterns in Ipomopsis aggregata (Polemoniaceae). American Journal of Botany, 70, 1468-1475.

    Google Scholar 

  • Plowright, R.C. (1987). Corolla depth and nectar concentration: an experimental study. Cana-dian Journal of Botany, 65, 1011-1013.

    Article  Google Scholar 

  • Pollard, S.D., Beck, M.W., & Dodson, G.N. (1995). Why do male crab spiders drink nectar? Animal Behaviour, 49, 1443-1448.

    Article  Google Scholar 

  • Proctor, M., Yeo, P., & Lack, A.(1996). The natural history of pollination. London: HarperCollins.

    Google Scholar 

  • Pyke, G.H., & Waser, N.M. (1981). The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica, 13, 260-270.

    Article  Google Scholar 

  • Raguso, R.A., & Willis, M.A. (2003). Hawkmoth pollination in Arizona’s Sonoran Desert: behavioral responses to floral traits. In: C.L. Boggs, W.B. Watt, & P.R. Ehrlich (Eds.), Butterflies: ecology and evolution taking flight (pp. 43-65). Chicago: University of Chi-cago Press.

    Google Scholar 

  • Raine, N.E., Willmer, P., & Stone, G.N. (2002). Spatial structuring and floral avoidance be-havior prevent ant-pollinator confict in a Mexican ant-acacia. Ecology, 83, 3086-3096.

    Google Scholar 

  • Rathcke, B.J. (1992). Nectar distributions, pollinator behavior, and plant reproductive suc-cess. In: M.D. Hunter, T. Ohguishi, & P.W. Price (Eds.), Effects of resource distribution on animal-plant interactions (pp. 113-137). New York: Academic Press.

    Google Scholar 

  • Rathman, E.S., Lanza, J., & Wilson, J. (1990). Feeding preferences of flesh flies (Sarcophaga bullata) for sugar-only vs. sugar-amino acid nectars. American Midland Naturalist, 124, 379-389.

    Article  Google Scholar 

  • Raven, P.H. (1979). A survey of reproductive biology in Onagraceae. New Zealand Journal of Botany, 17, 575-593.

    Google Scholar 

  • Roberts, S.P., & Harrison, J.F. (1999). Mechanisms of thermal stability during flight in the honeybee Apis mellifera. Journal of Experimental Biology, 202, 1523-1533.

    PubMed  Google Scholar 

  • Roberts, W.M. (1996). Hummingbirds’ nectar concentration preferences at low volume: the importance of time scale. Animal Behaviour, 52, 361-370.

    Article  Google Scholar 

  • Roces, F., & Blatt, J. (1999). Haemolymph sugars and the control of the proventriculus in the honey bee Apis mellifera. Journal of Insect Physiology, 45, 221-229.

    Article  CAS  PubMed  Google Scholar 

  • Roces, F., Winter, Y., & von Helversen, O. (1993). Nectar concentration preference and water balance in a flower visiting bat, Glossophaga soricina antillarum. In: Barthlott W., et al. (Eds.), Animal-plant interactions in tropical environments (pp. 159-165). Bonn: Museum Koenig.

    Google Scholar 

  • Rogers, M.E., &PotterD.A. (2004). Potential for sugar sprays and flowering plants to in-crease parasitism of white grubs (Coleoptera: Scarabaeidae) by tiphiid wasps (Hymenoptera: Tiphiidae). Environmental Entomology, 33, 619-626.

    Article  Google Scholar 

  • Romeis, J., & Wäckers, F.L. (2000). Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiological Entomology, 25, 247-253.

    Article  CAS  Google Scholar 

  • Romeis, J., & Wäckers, F.L. (2002). Nutritional suitability of individual carbohydrates and amino acids for adult Pieris brassicae. Physiological Entomology, 27, 148-156.

    Article  CAS  Google Scholar 

  • Roubik, D.W., & Buchmann, S.L. (1984). Nectar selection by Melipona and Apis mellifera (Hymenoptera: Apidae) and the ecology of nectar intake by bee colonies in a tropical for-est. Oecologia, 61, 1-10.

    Article  Google Scholar 

  • Roubik, D.W., Yanega, D., Aluja, M.S., Buchmann, S.L., & Inouye, D.W. (1995). On optimal nectar foraging by some tropical bees (Hymenoptera: Apidae). Apidologie, 26, 197-211.

    Article  Google Scholar 

  • Roxburgh, L., & Pinshow, B. (2000). Nitrogen requirements of an Old World nectarivore, theorange-tufted sunbird Nectarinia osea. Physiological and Biochemical Zoology, 73, 638-645.

    Google Scholar 

  • Rusterholz, H.-P., & Erhardt, A. (1997). Preferences for nectar sugars in the peacock butter-fly, Inachis io. Ecological Entomology, 22, 220-224.

    Article  Google Scholar 

  • Sakai, S., Kato, M., & Inoue, T. (1999). Three pollination guilds and variation in floral char-acteristics  of  Bornean  gingers (Zingiberaceae  and  Costaceae).  American  Journal  ofBotany, 86, 646-658.

    Google Scholar 

  • Schaefer, H.M., Schmidt, V., & Bairlein, F. (2003). Discrimination abilities for nutrients: which difference matters for choosy birds and why? Animal Behaviour, 65, 531-541.

    Article  Google Scholar 

  • Schemske, D.W., & Bradshaw, H.D., Jr. (1999). Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proceedings of the National Academy of Sci-ences USA, 96, 11910-11915.

    Article  CAS  Google Scholar 

  • Schondube, J.E., Herrera-M, L.G., & Martínez del Rio, C. (2001). Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology, 104, 59-73.

    CAS  Google Scholar 

  • Schondube, J.E., & Martínez del Rio, C. (2003). Concentration-dependent sugar preferences in nectar-feeding birds: mechanisms and consequences. Functional Ecology, 17, 445-453.

    Article  Google Scholar 

  • Schondube, J.E., & Martínez del Rio, C. (2004). Sugar and protein digestion in flowerpiercers and hummingbirds: a comparative test of adaptive convergence. Journal of Comparative Physiology B, 174, 263-273.

    Article  CAS  Google Scholar 

  • Schwerdtfeger, M. (1996). Die Nektarzusammensetzung der Asteridae und ihre Beziehung zu Blütenökologie und Systematik. Dissertationes Botanicae, 264, 95 pp. Berlin: Gebrüder Borntraeger.

    Google Scholar 

  • Schwilch, R., Mantovani, R., Spina, F., & Jenni, L. (2001). Nectar consumption of warblers after long-distance flights during spring migration. Ibis, 143, 24-32.

    Article  Google Scholar 

  • Scott, P.E., Buchmann, S.L., & O’Rourke, M.K. (1993). Evidence for mutualism between a flower-piercing carpenter bee and ocotillo: use of pollen and nectar by nesting bees. Eco-logical Entomology, 18, 234-240.

    Google Scholar 

  • Seeley, T.D. (1986). Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behavioral Ecology and Sociobiology, 19, 343-354.

    Article  Google Scholar 

  • Shiraishi, A., & Kuwabara, M. (1970). The effects of amino acids on the labellar hair chemo-sensory cells of the fly. Journal of General Physiology, 56, 768-782.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, B.B., & Neff, J.L. (1983). Evolution and diversity of floral rewards. In: C.E. Jones, & R.J. Little (Eds.), Handbook of experimental pollination biology (pp. 142-159). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Smith, A.P. (1982). Diet and feeding strategies of the marsupial sugar glider in temperate Australia. Journal of Animal Ecology, 51, 149-166.

    Article  Google Scholar 

  • Smith, L.L., Lanza, J., & Smith, G.C. (1990). Amino acid concentrations in extrafloral nectar of Impatiens sultani increase after simulated herbivory. Ecology, 71, 107-115.

    Article  CAS  Google Scholar 

  • Stabentheiner, A. (2001). Thermoregulation of dancing bees: thoracic temperature of pollen and nectar foragers in relation to profitability of foraging and colony need. Journal of In-sect Physiology, 47, 385-392.

    CAS  Google Scholar 

  • Stamhuis, K.W. (1992). Revision of the genus Lycus F. (Coleoptera: Lycidae) of the southern African subregion. MSc thesis, South Africa: University of Pretoria.

    Google Scholar 

  • Stiles, F.G. (1976). Taste preferences, color preferences, and flower choice in hummingbirds. Condor, 78, 10-26.

    Article  Google Scholar 

  • Stiles, F.G. (1981). Geographical aspects of bird-flower coevolution, with particular reference to Central America. Annals of the Missouri Botanical Garden, 68, 323-351.

    Article  Google Scholar 

  • Stiles, F.G. (1995). Behavioral, ecological and morphological correlates of foraging for ar-thropods by the hummingbirds of a tropical wet forest. Condor, 97, 853-878.

    Article  Google Scholar 

  • Stoffolano, J.G. (1995). Regulation of a carbohydrate meal in the adult Diptera, Lepidoptera, and Hymenoptera. In: R.F. Chapman, & G. de Boer (Eds.), Regulatory mechanisms in in-sect feeding (pp. 210-247). New York: Chapman & Hall.

    Google Scholar 

  • Stone, G.N., Gilbert, F., Willmer, P., Potts, S., Semida, F., & Zalat, S. (1999). Windows of opportunity and the temporal structuring of foraging activity in a desert solitary bee. Eco-logical Entomology, 24, 208-221.

    Google Scholar 

  • Stone, G.N., Raine, N.E., Prescott, M., & Willmer, P.G. (2003). Pollination ecology of aca-cias (Fabaceae, Mimosoideae). Australian Systematic Botany, 16, 103-118.

    Article  Google Scholar 

  • Streisfeld, M.A., & Kohn, J.R. (2006). Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. Journal of Evolutionary Biology, doi:10.1111/j.1420-9101.2006.01216.x.

    Google Scholar 

  • Stuurman, J., Hoballah, M.E., Broger, L., Moore, J., Basten, C., & Kuhlemeier, C. (2004). Dissection of floral pollination syndromes in Petunia. Genetics, 168, 1585-1599.

    Article  CAS  PubMed  Google Scholar 

  • Sussman, R.W., & Raven, P.H. (1978). Pollination by lemurs and marsupials: an archaic co-evolutionary system. Science, 200, 731-736.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, T.I. (1984). Nectar secretion in dandelion. Journal of Apicultural Research, 23, 204-208.

    Google Scholar 

  • Tadmor-Melamed, H., Markman, S., Arieli, A., Distl, M., Wink, M., & Izhaki, I. (2004). Lim-ited ability of Palestine sunbirds Nectarinia osea to cope with pyridine alkaloids in nectar of tree tobacco Nicotiana glauca. Functional Ecology, 18, 844-850.

    Article  Google Scholar 

  • Tamm, S., & Gass, C.L. (1986). Energy intake rates and nectar concentration preferences by hummingbirds. Oecologia, 70, 20-23.

    Article  Google Scholar 

  • Terra, W.R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentaliza-tion and function. Comparative Biochemistry and Physiology B, 109, 1-62.

    Article  Google Scholar 

  • Tezze, A.A., & Farina, W.M. (1999). Trophallaxis in the honeybee, Apis mellifera: the inter-action between viscosity and sucrose concentration of the transferred solution. Animal Behaviour, 57, 1319-1326.

    Article  PubMed  Google Scholar 

  • Thomas, D.W. (1984). Fruit intake and energy budgets of frugivorous bats. Physiological Zoology, 57, 457-467.

    Google Scholar 

  • Thomson, J.D., Wilson, P., Valenzuela, M., & Malzone, M. (2000). Pollen presentation and pollination syndromes, with special reference to Penstemon. Plant Species Biology, 15, 11-29.

    Article  Google Scholar 

  • Thornburg, R. (2007). Molecular biology of the Nicotiana floral nectary. In: S.W. Nicolson,

    Google Scholar 

  • M. Nepi, & E. Pacini (Eds.), Nectaries and nectar (pp. 265-288). Dordrecht: Springer.

    Google Scholar 

  • Traveset, A., & Sáez, E. (1997). Pollination of Euphorbia dendroides by lizards and insects: spatio-temporal variation in patterns of flower visitation. Oecologia, 111, 241-248.

    Google Scholar 

  • Tribe, G.D. (1991). Drosophila flavohirta Malloch (Diptera: Drosophilidae) in Eucalyptus flowers: occurrence and parasites in eastern Australia and potential for biological control on Eucalyptus grandis in South Africa. Journal of the Australian Entomological Society, 30, 257-262.

    Article  Google Scholar 

  • Van Tets, I.G., & Nicolson, S.W. (2000). Pollen and the nitrogen requirements of the lesser double-collared sunbird. Auk, 117, 826-830.

    Article  Google Scholar 

  • Visscher, P.K., & Seeley, T.D. (1982). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology, 63, 1790-1801.

    Article  Google Scholar 

  • Völkl, W., Woodring, J., Fischer, M., Lorenz, M.W., & Hoffmann, K.H. (1999). Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia, 118, 483-491.

    Article  Google Scholar 

  • von Helversen, O., & Reyer, H.-U. (1984). Nectar intake and energy expenditure in a flower visiting bat. Oecologia, 63, 178-184.

    Article  Google Scholar 

  • Wäckers, F.L. (2001). A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiol-ogy, 47, 1077-1084.

    Article  Google Scholar 

  • Wäckers, F.L., & Bonifay, C. (2004). How to be sweet? Extrafloral nectar allocation by Gos-sypium hirsutum fits optimal defense theory predictions. Ecology, 85, 1512-1518.

    Article  Google Scholar 

  • Waddington, K.D. (2001). Subjective evaluation and choice behavior by nectar- and pollen-collecting bees. In: L. Chittka, & J.D. Thomson (Eds.), Cognitive ecology of pollination (pp. 41-60). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wagner, D., & Kay, A. (2002). Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research,  4, 293-305.

    Google Scholar 

  • Waller, G.D. (1972). Evaluating responses of honeybees to sugar solutions using an artificial-flower feeder. Annals of the Entomological Society of America, 65, 857-862.

    CAS  Google Scholar 

  • Warburg, I., & Galun, R. (1992). Ingestion of sucrose solutions by the Mediterranean fruit fly Ceratitis capitata (Wiedl). Journal of Insect Physiology, 38, 969-972.

    Article  CAS  Google Scholar 

  • Waser, N.M. (2006). Specialization and generalization in plant-pollinator interactions: a his-torical perspective. In: N.M. Waser, & J. Ollerton (Eds.), Plant-pollinator interactions: from specialization to generalization (pp. 3-17). Chicago: University of Chicago Press.

    Google Scholar 

  • Waser, N.M., Chittka, L., Price, M.V., Williams, N.M., & Ollerton, J. (1996). Generalization in pollination systems, and why it matters. Ecology, 77, 1043-1060.

    Article  Google Scholar 

  • Waser, N.M., & Ollerton, J.  (2006). Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press.

    Google Scholar 

  • Watt, W.B., Hoch, P.C., & Mills, S.G. (1974). Nectar resource use by Colias butterflies: chemical and visual aspects. Oecologia, 14, 353-374.

    Article  Google Scholar 

  • Wei, X., Johnson, S.J., & Hammond, A.M. (1998). Sugar-feeding strategy of adult velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 27, 1235-1241.

    Google Scholar 

  • Welch, K.C., Hartman Bakken, B., Martínez del Rio, C., & Suarez, R.K. (2006). Humming-birds fuel hovering flight with newly ingested sugar. Physiological and Biochemical Zoology, 79, 1082-1087.

    Article  CAS  PubMed  Google Scholar 

  • Wells, H., Hill, P.S., & Wells, P.H. (1992). Nectarivore foraging ecology: rewards differing in sugar types. Ecological Entomology, 17, 280-288.

    Article  Google Scholar 

  • Wester, P., & Claßen-Bockhoff, R. (2006). Bird pollination in South African Salvia species. Flora, 201, 396-406.

    Google Scholar 

  • Westerkamp, C. (1990). Bird-flowers: hovering versus perching exploitation. Botanica Acta, 103, 366-371.

    Google Scholar 

  • Westerkamp, C. (1991). Honeybees are poor pollinators—why? Plant Systematics and Evolu-tion, 177, 71-75.

    Article  Google Scholar 

  • Whitaker, A.H. (1987). The roles of lizards in New Zealand plant reproductive strategies. New Zealand Journal of Botany, 25, 315-328.

    Google Scholar 

  • Wiens, D., Rourke, J.P., Casper, B.B., Rickart, E.A., LaPine, T.R., Peterson, C.J., & Chan-ning, A.  (1983). Nonflying mammal pollination of southern African proteas: a non-coevolved system. Annals of the Missouri Botanical Garden, 70, 1-31.

    Article  Google Scholar 

  • Willmer, P., & Stone, G. (1997). Temperature and water relations in desert bees. Journal of Thermal Biology, 22, 453-465.

    Article  Google Scholar 

  • Willmer, P.G. (1980). The effects of insect visitors on nectar constituents in temperate plants. Oecologia, 47, 270-277.

    Article  Google Scholar 

  • Willmer, P.G. (1986). Foraging patterns and water balance: problems of optimization for a xerophilic bee, Chalicodoma sicula. Journal of Animal Ecology, 55, 941-962.

    Article  Google Scholar 

  • Willmer, P.G. (1988). The role of insect water balance in pollination ecology: Xylocopa and Calotropis. Oecologia, 76, 430-438.

    Google Scholar 

  • Willmer, P.G., & Corbet, S.A. (1981). Temporal and microclimatic partitioning of the floral resources of Justicia aurea amongst a concourse of pollen vectors and nectar robbers. Oecologia, 51, 67-78.

    Article  Google Scholar 

  • Willmer, P.G., & Stone, G.N. (2004). Behavioral, ecological, and physiological determinants of the activity patterns of bees. Advances in the Study of Behavior, 34, 347-466.

    Article  Google Scholar 

  • Wilson, P., Castellanos, M.C., Wolfe, A.D., & Thomson, J.D. (2006). Shifts between bee and bird pollination in penstemons. In: N.M. Waser, & J. Ollerton (Eds.), Plant-pollinator in-teractions: from specialization to generalization (pp. 47-68). Chicago: University of Chicago Press.

    Google Scholar 

  • Winston, M.L. (1987). The biology of the honey bee. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Winter, Y., & von Helversen, O. (1998). The energy cost of flight: do small bats fly more cheaply than birds? Journal of Comparative Physiology B, 168, 105-111.

    Article  CAS  Google Scholar 

  • Winter, Y., & von Helverson, O. (2001). Bats as pollinators: foraging energetics and floral adaptations. In: L. Chittka, & J.D. Thomson (Eds.), Cognitive ecology of pollination (pp. 148-169). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Wolf, L.L., & Gill, F.B. (1986). Physiological and ecological adaptations of high montane sunbirds and hummingbirds. In: F. Vuilleumier & M. Monasterio (Eds.), High altitude tropical biogeography (pp. 103-119). New York: Oxford University Press & American Museum of Natural History.

    Google Scholar 

  • Wolff, D. (2006). Nectar sugar composition and volumes of 47 species of Gentianales from a southern Ecuadorian montane forest. Annals of Botany, 97, 767-777.

    Article  CAS  PubMed  Google Scholar 

  • Woodell, S.R.J. (1979). The role of unspecialized pollinators in the reproductive success of Aldabran plants. Philosophical Transactions of the Royal Society, London. Ser. B, 286, 99-108.

    Google Scholar 

  • Wrangham, R.W., & Waterman, P.G. (1981). Feeding behaviour of vervet monkeys on Aca-cia tortilis and Acacia xanthophloea: with special reference to reproductive strategies and tannin production. Journal of Animal Ecology, 50, 715-731.

    Article  Google Scholar 

  • Yong, T.-H. (2003). Nectar-feeding by a predatory ambush bug (Heteroptera: Phymatidae) that hunts on flowers. Annals of the Entomological Society of America, 96, 643-651.

    Article  Google Scholar 

  • Zimmerman, M. (1988). Nectar production, flowering phenology, and strategies for pollina-tion. In: J. Lovett Doust, & L. Lovett Doust (Eds.), Plant reproductive ecology: patterns and strategies (pp. 157-178). New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Nicolson, S.W. (2007). Nectar consumers. In: Nicolson, S.W., Nepi, M., Pacini, E. (eds) Nectaries and Nectar. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5937-7_7

Download citation

Publish with us

Policies and ethics