Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adang, M. J., Staver, M. J., Rocheleau, T. A., Leighton, J., Barker, R. F., and Thompson, D. V. 1985. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subspecies kurstaki HD-73 and their toxicity to Manduca sexta. Gene 36, 289–300.

    CAS  Google Scholar 

  • Akiba, Y. 1986. Microbial ecology of Bacillus thuringiensis VII. Fate of Bacillus thuringiensis in larvae of the silkworm, Bombyx mori, and the fall webworm, Hyphantria cunea. Jpn. J. Appl. Entomol. Zool. 30, 99–105.

    Google Scholar 

  • Akiba, Y. 1991. Assessment of rainwater-mediated dispersion of field-sprayed Bacillus thuringiensis in soil. Appl. Entomol. Zool. 26, 477–483.

    Google Scholar 

  • Aly, C. 1985. Germination of Bacillus thuringiensis variety israelensis spores in the gut of Aedes larvae (Diptera: Culicidae). J. Invertebr. Pathol. 45, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Aly, C. and Mulla, M. S. 1987. Effect of two microbial insecticides on aquatic predators of mosquitoes. J. Appl. Entomol. 103, 113–118.

    Article  Google Scholar 

  • Andrews, R. E., Jr., Faust, R. M., Wabiko, H., Raymond, K. C., and Bulla, L. A., Jr. 1987. The biotechnology of Bacillus thuringiensis. CRC Crit. Rev. Biotechnol. 6, 163–232.

    Article  CAS  Google Scholar 

  • Angus, T. A. 1954. A bacterial toxin paralysing silkworm larvae. Nature 173, 545.

    Article  PubMed  CAS  Google Scholar 

  • Anonymous. 2002. Public Health Service, Auckland District Health Board, health risk assessment of the 2002 aerial spray eradication programme for the painted apple moth in some western suburbs of Auckland. Wellington: Ministry of Agriculture and Forestry.

    Google Scholar 

  • Barloy, F., Lecadet, M. M., and Delecluse, A. 1998. Distribution of clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Curr. Microbiol. 36, 232–237.

    Article  PubMed  CAS  Google Scholar 

  • Beegle, C. C. and Yamamoto, T. 1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124, 587–616.

    Article  Google Scholar 

  • Bernhard, K. and Utz, R. 1993. Production of Bacillus thuringiensis insecticides for experimental and commercial uses. InBacillus thuringiensis: an Environmental Biopesticide: Theory and Practice” (P. F. Entwhistle, J. S. Cory, M. J. Bailey, and S. Higgs, Eds.), pp. 255–267. Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Bernier, R. L., Jr., Gannon, D. J., Moser, G. P., Mazzarello, M., Griffiths, M. M., and Guest, P. J. 1990. Development of a novel Bt strain for the control of forestry pests. Brighton Crop Protection Conference-Pests and Diseases. pp. 245–252, Brighton, UK.

    Google Scholar 

  • Boucias, D. and Pendland, J. C. 1998. Bacillus thuringiensis. In “Principles of Insect Pathology” pp. 217–257. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Boucias, D. and Pendland, J. C. 1998. Insect Pathogenic Bacteria. In “Principles of Insect Pathology” pp. 178–216. Kluwer Academic Publishers, Boston, MA.

    Google Scholar 

  • Bulla, L. A. Jr., Faust, R. M., Andrews, R., and Goodman, N. 1985. Insecticidal bacilli. In “The Molecular Biology of the Bacilli, vol.2” (D. A. Dubnau, Ed.), pp. 185–209. Academic Press Inc., New York.

    Google Scholar 

  • Bulla, L. A., Jr., Kramer, K. J., and Davidson, L. I. 1977. Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J. Bacteriol. 130, 375–383.

    CAS  Google Scholar 

  • Burges, H. D. and Hurst, J. A. 1977. Ecology of Bacillus thuringiensis in storage moths. J. Invertebr. Pathol. 30, 131–139.

    Article  Google Scholar 

  • Burges, H. D. and Jones, K. A. 1998. Formulation of bacteria, viruses, and protozoa to control insects. In “Formulation of Microbial Biopesticides” (H. D. Burges, Ed.), pp. 34–127, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Cantwell, G. E., Heimpel, A. M., and Thompson, M. J. 1964. The production of an exotoxin by various crystal-forming bacteria related to Bacillus thuringiensis variety thuringiensis Berliner. J. Insect Pathol. 6, 466–480.

    Google Scholar 

  • Carroll, J., and Ellar, D. J. 1993. An analysis of Bacillus thuringiensis δ-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Eur. J. Biochem. 214, 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. J., Curtiss, A., Alcantara, E. and Dean, D. H. 1995. Mutations in Domain I of Bacillus thuringiensis δ-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. J. Biol. Chem. 270, 6412–6419.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D. H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Molec. Biol. Rev. 62, 807–813.

    CAS  Google Scholar 

  • Davidson, E. W., Urbina, M., Payne, J., Mulla, M. S., Darwazeh, H., Dulmage, H. T., and Correa, J. A. 1984. Fate of Bacillus sphaericus 1593 and 2362 spores used as larvicides in the aquatic environment. Appl. Environ. Microbiol. 47, 125–129.

    PubMed  CAS  Google Scholar 

  • de Barjac H. and Bonnefoi, A. 1962. Essai de classification biochimique et serologique de 24 souche de Bacillus de type thuringiensis. Entomophaga 7, 5–31.

    Article  Google Scholar 

  • de Barjac, H., Larget-Thiery, I., Dumanoir, V. C., and Ripoutearu, H. 1985. Serological classification of Bacillus sphaericus strains on the basis of toxicity to mosquito larvae. Appl. Microbiol. Biotechnol. 21, 85–90.

    Article  Google Scholar 

  • de Barjac H., Veron, M., and Cosmao Dumanoir, V. 1980. Characterisation biochimique et serologique de souches de Bacillus sphaericus pathogens ou non pour les moustiques. Ann. Microbiol. 131B, 191–201.

    Google Scholar 

  • de Maagd, R. A., Bravo, A. and Crickmore, N. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. TRENDS in Genetics. 17, 193–199.

    Article  PubMed  Google Scholar 

  • de Maagd, R. A., Bravo, A., Berry, C., Crickmore, N. and Schnepf, H. E. 2003. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37, 409–433.

    Article  PubMed  CAS  Google Scholar 

  • Dean, D. H. 1984. Biochemical genetics of the bacterial insect-control agent Bacillus thuringiensis: Basic principles and prospects for genetic engineering. Biotechnol. Genet. Eng. Rev. 2, 341–363.

    PubMed  CAS  Google Scholar 

  • Dean, D. H., Rajamohan, F., Lee, M. K., Wu, S.-J., Chen, X. J, .Alcantara, E., and Hussain, S. R. 1996. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis – a minireview. Gene 179, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • DeLucca, A. J. II, Simonson, J. G., and Larson, A. D. 1981. Bacillus thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27, 865–870.

    Article  PubMed  Google Scholar 

  • Denolf, P., Jansens, S., Peferoen, M., Degheele, D., and Van Rie, J. 1993. Two different Bacillus thuringiensis delta-endotoxin receptors in the midgut brush border membrane of the european corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Pyralidae). Appl. Environ. Microbiol. 59, 1828–1837.

    PubMed  CAS  Google Scholar 

  • Dent, D. R. 1993. The use of Bacillus thuringiensis as an insecticide. In “Exploitation of Microorganisms” (D. G. Jones, Ed.), pp. 19–44, Chapman and Hall, London.

    Google Scholar 

  • Drobniewski, F. A. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6, 324–338.

    PubMed  CAS  Google Scholar 

  • Du, C. and Nickerson, K. W. 1996. Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin: physiological and pathogenic consequences. Appl. Environ. Microbiol. 62, 3722–3726.

    PubMed  CAS  Google Scholar 

  • Dulmage, H. T. and Cooperators. 1981. Insecticidal activity of isolates of Bacillus thuringiensis and their potential for pest control: 1. Background of the International Cooperative Program. In “Microbial Control of Pests and Plant Diseases 1970–1980” (H. D. Burges, Ed.), pp 130–200. Academic Press Inc., London.

    Google Scholar 

  • Dutky, S. R. 1963. The milky diseases. In “Insect Pathology: An Advanced Treatise. Vol. 2.” (E. A. Steinhaus, Ed.) pp. 75–115. Academic Press, New York.

    Google Scholar 

  • English, L., Readdy, T. L., and Bastian, A. E. 1991. Delta-endotoxin-induced leakage of 86Rb+–K+ and H2O from phospholipid vesicles is catalyzed by reconstituted midgut membrane. Insect Biochem. 21, 177–184.

    Article  CAS  Google Scholar 

  • English, L. and Slatin, S. L. 1992. Mode of action of delta-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins. Insect Biochem. Mol. Biol. 22, 1–7.

    Article  CAS  Google Scholar 

  • English, L., Walters, F., Von Tersch, M. A., and Slatin, S. 1995. Modulation of δ-endotoxin ion channels, p. 302–307. In J. Marshall Clark (ed.), Molecular action of insecticides on ion channels. American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Escriche, B., De Decker, N., Van Rie, J., Jansens, S., and Van Kerkhove, E. 1998. Changes in permeabilty of brush border membrane vesicles from Spodoptera littoralis midgut induced by insecticidal crystal proteins from Bacillus thuringiensis. Appl. Environ. Microbiol. 64, 1563–1565.

    CAS  Google Scholar 

  • Farkas, J., Sebesta, K., Horska, K., Samek, Z., Dolejs, L., and Sorm, F. 1976. Structure of thuringiensin, the thermostable exotoxin from Bacillus thuringiensis. Coll. Czechoslov. Chem. Commun. 42, 909–929.

    Google Scholar 

  • Fast, P. G. 1971. Isolation of a water-soluble toxin from a commercial microbial insecticide based on Bacillus thuringiensis. J. Invertebr. Pathol. 17, 301.

    Article  PubMed  CAS  Google Scholar 

  • Federici, B. A. 2005. Insecticidal bacteria: An overwhelming success for invertebrate pathology. J. Invertebr. Pathol. 89, 30–38.

    Article  PubMed  Google Scholar 

  • Federici, B. A. 1999. Bacillus thuringiensis in Biological Control. In “Handbook of Biological Control” (T. W. Fisher, T. S. Bellows, L. E. Caltagirone, D. L. Dahlsten, C. Huffaker and G. Gordh, Eds.), pp. 575–592. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Federici, B. A., Lüthy, P., and Ibarra, J. E. 1990. Parasporal body of Bacillus thuringiensis: structure, protein composition, and toxicity. In “Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics, and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus”(H. de Barjac and D. Sutherland, Eds.) pp. 16–44, Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Ferré, J., Real, M. D., van Rie, J., Jansens, S., and Peferon, M. 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119–5123.

    Article  PubMed  Google Scholar 

  • Ferré, J. and Van Rie, J. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501–533.

    Article  PubMed  Google Scholar 

  • Garczynski, S. F., Crim, J. W., and Adang, M. J. 1991. Identification of a putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl. Environ. Microbiol. 57, 2816–2820.

    PubMed  CAS  Google Scholar 

  • Gill, S., Cowles, E. A. and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615–636.

    Article  PubMed  CAS  Google Scholar 

  • Glare, T. R. and O’Calaghan, M. 2000. Bacillus thuringiensis: Biology, Ecology, and Safety”. 350 pp. John Wiley & Sons Ltd, Chichester, UK.

    Google Scholar 

  • Goldberg, L. J. and Margalit, J. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univiattus, Aedes aegypti, and Culex pipiens. Mosq. News 37, 355–358.

    Google Scholar 

  • Gonzalez, J. M., Jr. and Carlton, B. C. 1980. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3, 92–98.

    Article  CAS  Google Scholar 

  • Gonzalez, J. M., Jr., Dulmage, H. T., and Carlton, B. C. 1981. Correlation between specific plasmids and (delta)-endotoxin production of Bacillus thuringiensis. Plasmid 5, 351–365.

    Article  CAS  Google Scholar 

  • Gordon, R. E., W. C. Haynes, and C. H.-N. Pang. 1973. The genus Bacillus. Agricultural handbook 427. United States Department of Agriculture, Washington, D. C.

    Google Scholar 

  • Griego, V. M. and Spence, K. D. 1978. Inactivation of Bacillus thuringiensis spores byultraviolet and visible light. Appl. Environ. Microbiol. 35: 906–910.

    PubMed  CAS  Google Scholar 

  • Griffitts, J. S. and Aroian, R. V. 2005. Many roads to resistance: how invertebrates adapt to Bt toxins. BioEssays. 27, 614–624.

    Article  PubMed  CAS  Google Scholar 

  • Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J. L., Brousseau, R.and Cygler, M. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 1–18.

    Article  Google Scholar 

  • Hadley, W. M., Burchiel, S. W., McDowell, T. D., Thilsted, J. P., Hibbs, C. M., Whorton, J. A., Day, P. W., Friedman, M. B., and Stoll, R. E. 1987. Five-month oral (diet) toxicity/infectivity study of Bacillus thuringiensis insecticides in sheep. Fund. Appl. Toxicol. 8, 236–242.

    Article  CAS  Google Scholar 

  • Haider, M. Z. and Ellar, D. J. 1989. Mechanism of action of Bacillus thuringiensis δ-endotoxin: interaction with phospholipid vesicles. Biochim. Biophys. Acta 978, 216–222.

    Article  PubMed  CAS  Google Scholar 

  • Hannay, C. L. 1953. Crystalline inclusions in aerobic spore-forming bacteria. Nature 172, 1004.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, B. M., Damgaard, P. H., Eilenberg, J., and Pedersen, J. C. 1998. Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invertebr. Pathol. 71, 106–114.

    Article  PubMed  CAS  Google Scholar 

  • Heimpel, A. M. 1967. A critical review of Bacillus thuringiensis variety thuringiensis Berliner and other crystalliferous bacteria. Annu. Rev. Entomol. 12, 287–322.

    Article  PubMed  CAS  Google Scholar 

  • Heimpel, A. M. 1971. Safety of insect pathogens for man and vertebrates. “Microbial Control of Insects and Mites” (H. D. Burges and N. W. Hussey, Eds.), pp 469–489. Academic Press, New York.

    Google Scholar 

  • Heimpel, A. M. and Angus, T. A. 1958. The taxonomy of insect pathogens related to Bacillus cereus. Can. J. Microbiol. 4, 531–541.

    Article  CAS  Google Scholar 

  • Heimpel, A. M. and Angus, T. A. 1959. The site of action of crystalliferous bacteria in lepidopteran larvae. J. Insect Pathol. 1, 152–170.

    Google Scholar 

  • Helgason, E., Caugant, D., Olsen, I., and Kolsto, A. B. 2000. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J. Clin. Microbiol. 38, 1615–1622.

    PubMed  CAS  Google Scholar 

  • Hendrickx, K., De Loof, A., and Van Mellaert, H. 1990. Effects of Bacillus thuringiensis delta-endotoxin on the permeability of brush border membrane vesicles from tobacco hornworm (Manduca sexta) midgut. Comp. Biochem. Physiol. 95C, 241–245.

    CAS  Google Scholar 

  • Hernandez, E., Ramisse, F., Ducoureau, J. P., Cruel, T., and Cavallo, J. D. 1998. Bacillus thuringiensis subsp. konkukian (Serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol. 36, 2138–2139.

    PubMed  CAS  Google Scholar 

  • Hofmann, C., Vanderbruggen, H., Höfte, H., Van Rie, J., Jansens, S., and Van Mellaert, H. 1988a. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844–7848.

    Article  CAS  Google Scholar 

  • Hofmann, C., Lüthy, P., Hutter, R., and Pliska, V. 1988b. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173, 85–91.

    Article  CAS  Google Scholar 

  • Höfte, H., Van Rie, J., Jansen, S., Van Houtven, A., Vanderbruggen, H., and Vaeck, M. 1988. Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis. Appl. Environ. Microbiol. 54, 2010–2017.

    Google Scholar 

  • Höfte, H. and Whiteley, H. R. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255.

    PubMed  Google Scholar 

  • Holmes, S. B. 1998. Reproduction and nest behavior of Tennessee warblers Vermivora peregrina in forests treated with Lepidoptera-specific insecticides. J. Appl. Ecol. 35, 185–194.

    Article  CAS  Google Scholar 

  • Hostetter, D. L., Ignoffo, C. M., and Kearby, W. H. 1975. Persistence of formulations of Bacillus thuringiensis spores and crystals on eastern red cedar foliage in Missouri. J. Kan. Entomol. Soc. 48, 189–193.

    Google Scholar 

  • Ignoffo, C. M. 1973. Effects of entomopathogens on vertebrates. Ann. NY Acad. Sci. 217, 141–164.

    Article  PubMed  CAS  Google Scholar 

  • Ignoffo, C. M. 1992. Environmental factors affecting persistence of entomopathogens. Fla. Entomol. 75, 516–525.

    Article  Google Scholar 

  • Ihara, H., Kuroda, E., Wadano, A., and Himeo, M. 1993. Specific toxicity of δ-endotoxins from Bacillus thuringiensis to Bombyx mori. Biosci. Biotechnol. Biochem. 57, 200–204.

    Article  CAS  Google Scholar 

  • Innes, D. G. and Bendell, J. F. 1989. The effects of small-mammal populations of aerial applications of Bacillus thuringiensis, fenitrothion, and Matacil® used against jack pine budworm in Ontario. Can. J. Zool. 67, 1318–1323.

    Article  CAS  Google Scholar 

  • Itoua-Apoyolo, C., Drif, L., Vassal, J. M., de Barjac, H., Bossy, J. P., Leclant, F., and Frutos, R. 1995. Isolation of multiple subspecies of Bacillus thuringiensis from a population of the European Sunflower moth, Homoeosoma nebulella. Appl. Environ. Entomol. 61, 4343–4347.

    CAS  Google Scholar 

  • Jackson, S. G., Goodbrand, R. B., Ahmed, R., and Kasatiya, S. 1995. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Letters Appl. Microbiol. 21, 103–105.

    Article  CAS  Google Scholar 

  • Jackson, T. A., Pearson, J. F., O’Callaghan, M., Mahanty, H. K., and Willocks, M. J. 1992. “Pathogen to product-Development of Serratia entomophila (Enterobacteriaceae) as a commercial biological control agent for the New Zealand grass grub (Costelytra zealandica).” In “Use of Pathogens in Scarab Pest Management” (T. A. Jackson and T. R. Glare, Eds.), pp. 191–198. Intercept Limited, Hampshire, UK.

    Google Scholar 

  • James, C. 2004. Global Review of Commercialized Transgenic Crops: 2002. ISAAA Briefs No. 32, ISAAA: Ithaca, NY.

    Google Scholar 

  • Jarrett, P. and Stephenson, M. 1990. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Appl. Environ. Microbiol. 56, 1608–1614.

    PubMed  CAS  Google Scholar 

  • Jensen, G. B., Larsen, P., Jacobsen, B. L., Madsen, B., Wilcks, A., Smidet, L., and Andrup, L. 2002. Isolation and characterization of Bacillus cereus-like bacteria from faecal samples from greenhouse workers who are using Bacillus thuringiensis-based insecticides. Int. Arch. Occup. Environ. Health 75, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Karch, S. and Coz, J. 1986. Recyclage de Bacillus sphaericus chez les larves mortes de Culex pipiens (Diptera: Culicidae). Cah. ORSTOM ser. Entomol. Med. Parasit. 24, 41–44.

    Google Scholar 

  • Karch, S., Monteny, N., Jullien, J. L., Sinegre, G., and Coz, J. 1990. Control of Culex pipiens by Bacillus sphaericus and role of nontarget arthropods in its recycling. J. Am. Mosq. Control Assoc. 6, 47–54.

    PubMed  CAS  Google Scholar 

  • Kellen, W. R., Clark, T. B., Lindegren, J. E., Ho, B., Rogoff, C., and Singer, S. 1965. Bacillus sphaericus Neide as a pathogen of mosquitoes. J. Invertebr. Pathol. 7, 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M. G. 1981. Advances in the use of Bacillus popilliae for pest control. In “Microbial Control of Pests and Plant Diseases 1970–1980” (H. D. Burges, Ed.) pp. 183–192. Academic Press, London.

    Google Scholar 

  • Klein, M. G. 1992. Use of Bacillus popilliae in Japanese Beetle Control. In “Use of Pathogens in Scarab Pest Management” (T. A. Jackson and T. R. Glare, Eds.), pp. 179–189. Intercept Limited, Hampshire, UK.

    Google Scholar 

  • Klein, M. G. and Jackson, T. A. 1992. Bacterial diseases of scarabs. In “Use of Pathogens in Scarab Pest Management” (T. A. Jackson and T. R. Glare, Eds.), pp 43–61. Intercept Limited, Hampshire, UK.

    Google Scholar 

  • Klein, M. G. and Kaya, H. K. 1995. Bacillus and Serratia species for scarab control. Mem. Inst. Oswaldo Cruz 90, 87–95.

    Article  Google Scholar 

  • Knell, R. J., Begon, M., and Thompson, D. J. 1998. Host-pathogen population dynamics, basic reproductive rates and threshold densities. Oikos, 81, 299–308.

    Article  Google Scholar 

  • Knowles, B. H. and Ellar, D. J. 1987. Colloid-osmotic lysis is a general feature of the mechanisms of action of Bacillus thuringiensis (delta)–endotoxins with different insect specificity. Biochim. Biophys. Acta 924, 509–518.

    CAS  Google Scholar 

  • Knowles, B. H. and Dow J. A. T. 1993. The crystal delta-endotoxins of Bacillus thuringiensis: models for their mechanism of action on the insect gut. Bioessays 15, 469–476.

    Article  CAS  Google Scholar 

  • Knowles, B. H. 1994. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv. Insect Physiol. 24, 275–308.

    Article  CAS  Google Scholar 

  • Krieg, A. 1971. Concerning (alpha)-exotoxin produced by vegetative cells of Bacillus thuringiensis and Bacillus cereus. J. Invertebr. Pathol. 17, 134–135.

    Article  CAS  Google Scholar 

  • Kronstad, J. W. and Whiteley, H. R. 1986. Three classes of homologous Bacillus thuringiensis crystal protein genes. Gene 43, 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Krych, V. K., Johnson, J. L., and Yousten, A. A. 1980. Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. Int. J. Syst. Bacteriol. 30, 476–484.

    Article  CAS  Google Scholar 

  • Lacey, L. A. 1983. Larvicidal activity of Bacillus pathogens against Toxorhynchites mosquitoes (Diptera: Culicidae). J. Med. Entomol. 20, 620–624.

    Google Scholar 

  • Lacey, L. A. 1985. The effects of pH and storage temperature on spore viability and mosquito larvicidal activity of Bacillus sphaericus. Bull. Soc. Vect. Ecol. 10, 102–106.

    Google Scholar 

  • Lacey, L. A. 1997. Bacteria: Laboratory bioassay of bacteria against aquatic insects with emphasis on larvae of mosquitoes and black flies. In “Manual of Techniques in Insect Pathology”(L. A. Lacey, Ed.), pp. 79–90. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Lacey, L. A. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. In “Biorational Control of Mosquitoes” Am. Mosq. Control Assoc. Bull. 7, in press.

    Google Scholar 

  • Lacey, L. A., Amaral, J. J., Klein, M. G., Simoes, N. J., Martins, A., and Mendes, C. 1994. Microbial control of Popillia japonica (Coleoptera: Scarabaeidae) on Terceira Island (Azores, Portugal): the role of operational research. Proc. VIth Int. Colloq. Invertebr. Pathol. Microb. Control pp 409–415.

    Google Scholar 

  • Lacey, L. A., Day, J., and Heitzman, C. M. 1987. Long-term effects of Bacillus sphaericus on Culex quinquefasciatus. J. Invertebr. Pathol. 49, 116–123.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, L. A. and Merritt, R. W. 2003. The safety of bacterial microbial agents used for black fly and mosquito control in aquatic environments. In “Environmental Impacts of Microbial Insececticides: Need and Methods for Risk Assessment”(H. M. T. Hokkanen and A. E. Hajek, Eds.), pp. 151–168. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Lacey, L. A. and Mulla, M. S. 1990. Safety of Bacillus thuringiensis (H-14) and Bacillus sphaericus to non-target organisms in the aquatic environment. In “Safety of Microbial Insecticides” (M. Laird, L. A. Lacey, and E. W. Davidson, Eds.)pp. 169–188. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lacey, L. A., Ross, D. H., Lacey, C. M., Inman, A., and Dulmage, H. T. 1988. Experimental formulations of Bacillus sphaericus for the control of anopheline and culicine larvae. J. Indus. Microbiol. 3, 39–47.

    Article  Google Scholar 

  • Lacey, L. A. and Siegel, J. P. 2000. Safety and ecotoxicology of entomopathogenic bacteria. In “Entomopathogenic Bacteria: From Laboratory to Field Application” (J. F. Charles, A. Delecluse, and C. Nielsen-LeRoux, Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Lacey, L. A. and Undeen, A. H. 1986. Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31, 265–296.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, L. A., Urbina, M. J., and Heitzman, C. M. 1984. Sustained release formulations of Bacillus sphaericus and Bacillus thuringiensis (H-14) for control of container-breeding Culex quinquefasciatus. Mosq. News 44, 26–32.

    Google Scholar 

  • Lacey, L. A., Lacey, C. M., Peacock, B., and I. Thiery. 1988. Mosquito host range and field activity of Bacillus sphaericus isolate 2297 (serotype 25). J. Amer. Mosq. Control Assoc. 4, 51–56.

    CAS  Google Scholar 

  • Lecadet, M. M., Frachon, E., Dumanoir, V. C., Ripouteau, H., Hamon, S., Laurent, P., and Thiery, I. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86, 660–672.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. K., Rajamohan, F., Gould, F., Dean, D. H. 1995. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl Environ Microbiol. 61, 3836–3842.

    PubMed  CAS  Google Scholar 

  • Leong, K. L. H., Cano, R. J., and Kubinski, A. M. 1980. Factors affecting Bacillus thuringiensis total field persistence. Environ. Entomol. 9, 593–599.

    Google Scholar 

  • Li, J., Carroll, J., and Ellar, D. J. 1991. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 angstrom resolution. Nature 353, 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Patel, S. S., and Dean, D. H. 1995. Irreversible binding kinetics of Bacillus thuringiensis CryIAa δ-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J. Biol. Chem. 270, 24719–24724.

    Article  PubMed  CAS  Google Scholar 

  • Luo, K., Tabashnik, B. E. and Adang, M. J. 1997. Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella). Appl. Environ. Microbiol. 63, 1024–1027.

    PubMed  CAS  Google Scholar 

  • Luo, K., Banks, D., and Adang, M. J. 1999. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 δ-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 65, 457–464.

    PubMed  CAS  Google Scholar 

  • Lüthy, P. 1986. Insect pathogenic bacteria as pest control agents. Fortschr. Zool. 32, 201–216.

    Google Scholar 

  • Lynch, R. E., Lewis, L. C., and Brindley, T. A. 1976. Bacteria associated with eggs and 1st-instar larvae of the European corn borer: Isolation techniques and pathogenicity. J. Invertebr. Pathol. 27, 325–331.

    Article  Google Scholar 

  • Martin, F. G. and Wolfersberger, M. G. 1995. Bacillus thuringiensis delta-endotoxin and larval Manduca sexta midgut brush-border membrane vesicles act synergistically to cause very large increases in the conductance of planar lipid bilayers. J. Exp Biol. 198(Pt 1), 91–6

    PubMed  CAS  Google Scholar 

  • Martin, P. A. W. 1994. An iconoclastic view of Bacillus thuringiensis ecology. Am. Entomol. 40, 85–90.

    Google Scholar 

  • Martin, P. A. W. and Travers, R. S. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55, 2437–2442.

    PubMed  CAS  Google Scholar 

  • Martin, W. F. and Reichelderfer, C. F. 1989. Bacillus thuringiensis: Persistence and movement in field crops. Proceedings and Abstracts Society for Invertebrate Pathology XXIInd Annual Meeting, p 25. University of Maryland, USA.

    Google Scholar 

  • McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229, 193–195

    Article  PubMed  CAS  Google Scholar 

  • McGuire, M. R., Galan-Wong, L. J., and Tamez-Guerra, P. 1997. Bacteria: bioassay of Bacillus thuringiensis against lepidopteran larvae. In “Manual of Techniques in Insect Pathology” (L. A. Lacey, Ed.), pp. 91–100. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Meadows, M. P. 1993. Bacillus thuringiensis in the environment: ecology and risk assessment. InBacillus thuringiensis, an Environmental Biopesticide: Theory and Practice” (P. F. Entwhistle, J. S. Corey, M. J. Bailey, and S. Higgs) pp. 193–220, Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Meadows, M. P., Ellis, D. J. Butt, J., Jarrett, P., and Burges, H. D. 1992. Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Appl. Environ. Microbiol. 58, 1344–1350.

    PubMed  CAS  Google Scholar 

  • Menon, A. S., and DeMestral, J. 1985. Survival of Bacillus thuringiensis var. kurstaki in waters. Water, Air Soil Pollut. 25, 265–274.

    CAS  Google Scholar 

  • Merritt, R. W., E. D. Walker, M. A. Wilzbach, K. W. Cummins, and W. T. Morgan. 1989. A broad evaluation of B.t.i. for black fly (Diptera: Simuliidae) control in a Michigan river: efficacy, carry and nontarget effects on invertebrates and fish. J. Am. Mosq. Control Assoc. 5, 397–415.

    PubMed  CAS  Google Scholar 

  • Mohd-Salleh, M. B., Beegle, C. C., and Lewis, L. C. 1980. Fermentation media and production of exotoxin by three varieties of Bacillus thuringiensis. J. Invertebr. Pathol. 35, 75–83.

    Article  CAS  Google Scholar 

  • Mulla, M. S. 1990. Activity, field efficacy, and use of Bacillus thuringiensis israelensis against mosquitoes. In “Bacterial Control of Mosquitoes and Black Flies: Biochemistry, Genetics and Applications of Bacillus thuringiensis israelensis and Bacillus sphaericus” (H. de Barjac and D. J. Sutherland, Eds.) pp. 134–160. Rutgers University Press, New Brunswick, NJ.

    Google Scholar 

  • Mulla, M. S., Axelrod, H., Darwazeh, H. A., and Matanmi, B. A. 1988. Efficacy and longevity of Bacillus sphaericus 2362 formulations for control of mosquito larvae in dairy wastewater lagoons. J Am. Mosq. Control Assoc. 4, 448–452.

    PubMed  CAS  Google Scholar 

  • Mulla, M. S., Darwazeh, H. A., Davidson, E. W., Dulmage, H. T., and Singer, S. 1984. Larvicidal activity and field efficacy of Bacillus sphaericus strains against mosquito larvae and their safety to nontarget organisms. Mosq. News 44, 336–342.

    Google Scholar 

  • Mulla, M. S., Rodcharoen, J., Ngamsuk, W., Tawatsin, A., Pan-Urai, P., and Thavara, U. 1997. Field trials with Bacillus sphaericus formulations against polluted water mosquitoes in a suburban area of Bangkok, Thailand. J. Am. Mosq. Control Assoc. 13, 297–304.

    PubMed  CAS  Google Scholar 

  • Mulligan, F. S. III, Schaefer, C. H., and Wilder, W. H. 1980. Efficacy and persistence of Bacillus sphaericus and B. thuringiensis H-14 against mosquitoes under laboratory and field conditions. J. Econ. Entomol. 73, 684–688.

    Google Scholar 

  • Nagy, L. R. and Smith, K. G. 1997. Effects of insecticide-induced reduction in lepidopteran larvae on reproductive success of hooded warblers. The Auk 114, 619–627.

    Google Scholar 

  • Narva, K. E., Payne, J. M., Schwab, G. E., Hickle, L. A., Galasan, T., and Sick, A. J. 1991. Novel Bacillus thuringiensis microbes against nematodes, and genes encoding novel nematode-active toxins cloned from Bacillus thuringiensis isolates. European Patent Application Number 91305047.2, filing date 04.06.91. Publication number: 0 462 721 A2

    Google Scholar 

  • Nicolas, L., Dossou-Yovo, J., and Hougard, J. M. 1987. Persistence and recycling of Bacillus sphaericus 2362 spores in Culex quinquefasciatus breeding sites in west Africa. Appl. Microbiol. Biotech. 25, 341–345.

    Article  Google Scholar 

  • Nielsen-LeRoux, C., Charles, J. F., Thiery, I., and Georghiou, G. P. 1995. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Euro. J. Biochem. 228, 206–210.

    Article  CAS  Google Scholar 

  • Nielsen-LeRoux, C., Pasquier, F., Charles, J. F., Sinegre, G., Gaven, B., and Pasteur, N. 1997. Resistance to Bacillus sphaericus involves different mechanisms in Culex pipiens (Diptera: Culicidae) larvae. J. Med. Entomol. 34, 321–327.

    PubMed  CAS  Google Scholar 

  • Obenchain, F. D. and Ellis, B. J. 1990. Safety considerations in the use of Bacillus popillae, the milky disease pathogen of Scarabeidae. In “Safety of Microbial Insecticides” (M. Laird, L. A. Lacey, and E. W. Davidson, Eds.) pp. 189–201. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ohana, B., Margalit, J., and Barak, Z. 1987. Fate of Bacillus thuringiensis subsp. israelensis under simulated field conditions. Appl. Environ. Microbiol. 53, 828–831.

    PubMed  CAS  Google Scholar 

  • Ohba, M. and Aizawa, K. 1986. Distribution of Bacillus thuringiensis in soils of Japan. J. Invertebr. Pathol. 47, 277–282.

    Article  Google Scholar 

  • Ohba, M., Yu, Y. M., and Aizawa, K. 1988. Occurrence of noninsecticidal Bacillus thuringiensis flagellar serotype 14 in the soil of Japan. Appl. Microbiol. 11, 85–89.

    CAS  Google Scholar 

  • Pearce, M., Habbick, B., Williams, J., Eastmen, M., and Newman, M. 2002. The effects of aerial spraying with Bacillus thuringiensis kurstaki on children with asthma. Can. J. Public Health. 93, 21–25.

    PubMed  Google Scholar 

  • Petras, S. F. and Casida, L. E. Jr. 1985. Survival of Bacillus thuringiensis spores in soil. Appl. Environ. Microbiol. 50, 1496–1501.

    PubMed  CAS  Google Scholar 

  • Petrie, K., Thomas, M., and Broadbent, E. 2003. Symptom complaints following aerial spraying with biological insecticide Foray 48B. NZMJ 116, 1–7.

    Google Scholar 

  • Pettersson, B., Rippere, K. E., Yousten, A. A., and Priest, F. G. 1999. Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov, and Paenibacillus popilliae comb. nov. Int. J. Syst. Bacteriol. 49, 531–540.

    Article  PubMed  Google Scholar 

  • Pinnock, D. E., Brand, R. J., Jackson, K. L., and Milstead, J. E. 1974. The field persistence of Bacillus thuringiensis spores on Cercis occidentalis leaves. J. Invertebr. Pathol. 23, 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Pinnock, D. E., Milstead, J. E., Kirby, M. E., and Nelson, B. J. 1977. Stability of entomopathogenic bacteria. Misc. Publ. Entomol. Soc. Am. 10, 77–97.

    Google Scholar 

  • Prasertphon, S., Areehul, P., and Tanada, Y. 1974. Sporulation of Bacillus thuringiensis in host cadavers. J. Invertebr. Pathol. 21, 205–207.

    Article  Google Scholar 

  • Pusztai, M., Fast, P., Gringorten, L., Kaplan, H., Lessard, T., and Carey, P. R. 1991. The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochem. J. 273, 43–47.

    PubMed  CAS  Google Scholar 

  • Rajamohan, F., Alcantara, E., Lee, M. K., Chen, X. J., Curtiss, A. and Dean, D. H. 1995. Single amino acid changes in domain II of Bacillus thuringiensis CryIAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacteriol. 177, 2276–2282.

    PubMed  CAS  Google Scholar 

  • Rajamohan, F., Lee, M. K. and Dean, D. H. 1998. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog. Nucleic Acids Mol. Biol. 60, 1–27.

    Article  CAS  Google Scholar 

  • Rao, D. R., Mani, T. R., Rajendran, R., Joseph, A. S., Gajanana, A. and Reuben, R. 1995. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J. Am. Mosq. Control Assoc., 11, 1–5.

    PubMed  CAS  Google Scholar 

  • Rasko, D. A., Altherr, M. R., Han, C. S., and Ravel, J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29, 303–329.

    Article  PubMed  CAS  Google Scholar 

  • Reardon, R. C. and Hassig, K. 1983. Spruce budworm larval populations and field persistence of Bacillus thuringiensis after treatment in Wisconsin. J. Econ. Entomol. 76, 1139–1143.

    Google Scholar 

  • Redmond, C.T and Potter, D. A. 1995. Lack of efficacy of in vivo and putatively in vitro produced Bacillus popilliae against field populations of Japanese beetle (Coleoptera: Scarabaeidae) grubs in Kentucky. J. Econ. Entomol. 88, 846–854.

    Google Scholar 

  • Rodenhouse, N. L. and Holmes, R. T. 1992. Results of experimental and natural food reductions for breeding black-throated blue warblers. Ecology 73, 357–372.

    Article  Google Scholar 

  • Saleh, S. M., Harris, R. F., and Allen, O. N. 1970. Fate of Bacillus thuringiensis in soil: effect of soil pH and organic amendment. Can. J. Microbiol. 16, 677–680.

    Article  PubMed  CAS  Google Scholar 

  • Samples, J. R. and Buettner, H. 1983. Ocular infection caused by a biological insecticide. J. Inf. Dis. 148, 613–614.

    Google Scholar 

  • Sanchis, V. and Ellar, D. J. 1993. Identification and partial purification of a Bacillus thuringiensis CryIC δ-endotoxin binding protein from Spodoptera litoralis gut membranes. FEBS Letters 3, 264–268.

    Article  Google Scholar 

  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62,775–806.

    PubMed  CAS  Google Scholar 

  • Schwartz, J. L., Garneau, L., Masson, L., and Brousseau, R. 1991. Early response of cultured lepidopteran cells to exposure to δ-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim. Biophys. Acta. 1065, 250–260.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, J. L., Garneau, L., Savaria, D., Masson, L., Brousseau, R., and Rousseau, E. 1993. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J. Membr. Biol. 132, 53–62.

    PubMed  CAS  Google Scholar 

  • Shadduck, J. A., Singer, S., and Lause, S. 1980. Lack of mammalian pathogenicity of entomocidal isolates of Bacillus sphaericus. Environ. Entomol. 9, 403–407.

    Google Scholar 

  • Sheeran, W. and Fisher, S. W. 1992. The effects of agitation, sediment, and competition on the persistence and efficacy of Bacillus thuringiensis var. israelensis (Bti). Ecotoxicol. Environ. Safety 24, 338–346.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. P. 1997. Testing the pathogenicity and infectivity of entomopathogens to mammals. In “Manual of Techniques in Insect Pathology” (L. A. Lacey, Ed.) pp. 325–336, Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Siegel, J. P. 2001. The mammalian safety of Bacillus thuringiensis-based insecticides. J. Invertebr. Pathol. 77, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J. P., and Novak, R. J. 1997. Field trials of VectoLex CG®, a Bacillus sphaericus larvicide, in Illinois waste tires and catch basins. J. Am. Mosq. Control Assoc. 13, 305–310.

    PubMed  CAS  Google Scholar 

  • Siegel, J. P. and Novak, R. J. 1999. Duration of activity of the microbial larvicide VectoLex CG® (Bacillus sphaericus) in Illinois catch basins and waste tires. J. Am. Mosq. Control Assoc. 15, 366–370.

    PubMed  CAS  Google Scholar 

  • Siegel, J. P. and Shadduck, J. A. 1990. Safety of microbial insecticides to vertebrates-humans. In “Safety of Microbial Insecticides” (M. Laird, L. A. Lacey, and E. W. Davidson, Eds.) pp. 101–113. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Siegel, J. P., Smith, A. R., and Novak, R. J. 1997. Cellular fatty acid analysis of a human isolate alleged to be Bacillus sphaericus and Bacillus sphaericus isolated from a mosquito larvicide. J. Appl. Environ. Microbiol. 63, 1006–1010.

    CAS  Google Scholar 

  • Siegel, J. P., Tebbets, S. J., and Vail, P. V. 2000. Prevalence and transovum transmission of Bacillus thuringiensis Berliner in a navel orangeworm colony. J. Invertebr. Pathol. In press.

    Google Scholar 

  • Singer, S. 1973. Insecticidal activity of recent bacterial isolates and their toxins against mosquito larvae. Nature 244, 110–111.

    Article  PubMed  CAS  Google Scholar 

  • Skovmand, O., Thiery, I., Benzon, G. L., Sinegre, G., Monteny, N., and Becker, N. 1998. Potency of products based on Bacillus thuringiensis var. israelensis: interlaboratory variations. J. Am. Mosq. Control Assoc. 14, 298–304.

    PubMed  CAS  Google Scholar 

  • Slatin, S. L., Abrams, C. K., and English, L. 1990. Delta-endotoxin forms cation-selective channels in planar lipid bilayers. Biochem Biophys. Res. Commun. 169, 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, W. A. and MacLeod, C. F. 1961. Study of the survival of Bacillus thuringiensis var. thuringiensis Berliner in the digestive tracts and in feces of a small mammal and birds. J. Insect Pathol. 3, 266–270.

    Google Scholar 

  • Smith, R. A. and Couche, G. A. 1991. The phylloplane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57, 311–315.

    PubMed  CAS  Google Scholar 

  • Snarski, V. M. 1990. Interactions between Bacillus thuringiensis subsp. israelensis and fathead minnows, Pimephales promelas Rafinesque, under laboratory conditions. Appl. Environ. Microbiol. 56, 2618–2622.

    PubMed  CAS  Google Scholar 

  • Stahly, D. P. and Klein, M. G. 1992. Problems with in vitro production of spores of Bacillus popilliae for use in biological control of the Japanese beetle. J. Invertebr. Pathol. 60, 282–291.

    Article  Google Scholar 

  • Stahly, D. P., Dingman, D. W., Bulla, L. A., Jr., and Aronson, A. I. 1978. Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem. Biophys. Res. Commun. 84, 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Steinhaus, E. A., 1959. On the improbability of Bacillus thuringiensis Berliner mutating to forms pathogenic for vertebrates. J. Econ. Entomol. 52, 506–508.

    Google Scholar 

  • Tabashnik, B. E., Finson, N., Groeters, F. R., Moar, W. J., Johnson, M. W., Luo, K., and Adang, M. J. 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA 91, 4120–4124.

    Article  PubMed  CAS  Google Scholar 

  • Tanada, Y. and Kaya, H.K 1993. “Insect Pathology”. Academic Press, San Diego, CA.

    Google Scholar 

  • Thiery, I. and Frachon, E. 1997. Identification, isolation, culture and preservation of entomopathogenic bacteria. In “Manual of Techniques in Insect Pathology” (L. A. Lacey, Ed.), pp 55–90. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Thomas, W. E. and Ellar, D. E. 1983. Bacillus thuringiensis var. israelensis crystal delta endotoxins: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60, 181–197.

    CAS  Google Scholar 

  • Valadares de Amorim, G., Whittome, B., Shore, B., and Levin, D. B. 2001. Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B. Appl Environ Microbiol 67, 1035–1043.

    Article  PubMed  CAS  Google Scholar 

  • Vankova, J. and Purrini, K. 1979. Natural epizootics caused by bacilli of the species Bacillus thuringiensis and Bacillus cereus. Z. ang. Entomol. 88, 216–221.

    Google Scholar 

  • Van Rie, J., Jansens, S., Höfte, H., Degheele, D., and Van Mellaert, H. 1989. Specificity of Bacillus thuringiensis delta-endotoxins. Eur. J. Biochem. 186, 239–247.

    Article  PubMed  Google Scholar 

  • Van Rie, J., Jansens, S., Höfte, H., Degheele, D., and Van Mellaert, H. 1990a. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins Appl. Environ. Microbiol. 56, 1378–1385.

    Google Scholar 

  • Van Rie, J., McGaughey, W. H., Johnson, D. E., Barnett, B. D., and Van Mellaert, H.. 1990b. Mechanisms of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72–74.

    Article  Google Scholar 

  • Venkateswerlu, G. and Stotsky, G. 1992. Binding of the protoxin and toxin proteins of Bacillus thuringiensis subspecies kurstaki on clay minerals. Curr. Microbiol. 25, 225–233.

    Article  CAS  Google Scholar 

  • Visser, B., Munsterman, E., Stoker, A., and Dirks, W. G. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172, 6783–6788.

    PubMed  CAS  Google Scholar 

  • Warren, R. E., Rubenstein, D., Ellar, D. J., Kramer, J. M., and Gilbert, R. J. 1984. Bacillus thuringiensis var. israelensis: protoxin activation and safety. Lancet 8378, 678–679.

    Article  Google Scholar 

  • Weiner, B. A. 1978. Isolation and partial characterization of the parasporal body of Bacillus popilliae. Can. J. Microbiol. 24, 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  • West, A. W., Burges, H. D., White, J. R., and Wyborn, C. H. 1984a. Persistence of Bacillus thuringiensis parasporal crystal insecticidal activity in soil. J. Invertebr. Pathol. 44, 128–133.

    Article  Google Scholar 

  • West, A. W., Burges, H. D., and Wyborn, C. H. 1984b. Effect of incubation in natural and autoclaved soil upon potency and viability of Bacillus thuringiensis. J. Invertebr. Pathol. 44, 121–127.

    Article  Google Scholar 

  • Wilcox, D. R., Shivakumar, A. G., Melin, B. E., Miller, M. F., Benson, T. A., Schopp, C. W., Casuto, D., Gundling, G. J., Bolling, T. J., Spear, B. B., and Fox, J. L. 1986. Genetic engineering of bioinsecticides. In “Protein Engineering: Applications in Science, Medicine, and Industry” (M. Inouye and R. Sarma, Eds.), pp. 395–413. Academic Press, Orlando, FL.

    Google Scholar 

  • Wipfli, M. S. and Merritt, R. W. 1994. Effects of Bacillus thuringiensis var. israelensis on nontarget benthic insects through direct and indirect exposure. J. N. Am. Benthol. Soc. 13, 190–205.

    Article  Google Scholar 

  • Wolfersberger, M. G., Lüthy, P., Maurer, A., Parenti, P., Sacchi, V. F., Giordana, B., and Hanozet, G. M. 1987. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae). Comp. Biochem. Physiol. 86A, 301–308.

    Article  CAS  Google Scholar 

  • Wolfersberger, M. G. 1990. The toxicity of two Bacillus thuringiensis δ-endotoxin to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia. 46, 475–477.

    Article  PubMed  CAS  Google Scholar 

  • Wolfersberger, M. G. 1995. Permeability of Bacillus thuringiensis CryI toxin channels. In “Molecular Action of Insecticides on Ion Channels” (J. Marshall Clark, Ed.), pp. 294–301. American Chemical Society, Washington, D. C.

    Chapter  Google Scholar 

  • Woodburn, M. A., Yousten, A. A., and Hilu, K. H. 1995. Random amplified polymorphic DNA fingerprinting of mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus. Int. J.System. Bacteriol. 45, 212–217.

    Article  CAS  Google Scholar 

  • Yokoyama, T., Tanaka, M., and Hasegawa, M. 2004. Novel cry gene from Paenibacillus lentimorbus strain Semadara inhibits ingestion and promotes insecticidal activity in Anomala cuprea larvae. J. Invertebr. Pathol. 85, 25–32

    Article  PubMed  CAS  Google Scholar 

  • Yousten, A. A., Benfield, E. F., Campbell, R. P., Foss, S. S., and Genthner, F. J. 1991. Fate of Bacillus sphaericus 2362 spores following ingestion by nontarget invertebrates. J. Invertebr. Pathol. 58, 427–435.

    Article  PubMed  CAS  Google Scholar 

  • Yousten, A. A., Genthner, F. J., and Benfield, E. F. 1992. Fate of Bacillus sphaericus and Bacillus thuringiensis serovar israelensis in the aquatic environment. J. Am. Mosq. Contol. Assoc. 8, 143–148.

    CAS  Google Scholar 

  • Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W., and Schairer, H. U. 1997. Cloning and analysis of the first cry gene from B. popilliae. J. Bacteriol. 179, 4336–4341.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Garczynski, S.F., Siegel, J.P. (2007). Bacteria. In: Lacey, L.A., Kaya, H.K. (eds) Field Manual of Techniques in Invertebrate Pathology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5933-9_8

Download citation

Publish with us

Policies and ethics