Sulfur in forest ecosystems

  • Michael Tausz
Part of the Plant Ecophysiology book series (KLEC, volume 6)

Keywords

Phosphorus Sulfide Europe Cadmium Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augustin S, Bolte A, Holzhausen M, Wolff B (2005) Exceedance of critical loads of nitrogen and sulphur and its relation to forest conditions. Eur J For Res 124: 289-300Google Scholar
  2. Bauer G, Schulze E-D, Mund M (1997) Nutrient contents and concentrations in relation to growth of Picea abies and Fagus sylvatica along a European transect. Tree Physiol 17: 777-786PubMedGoogle Scholar
  3. Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA (2003) Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. J Agric Food Chem 51: 3546-3553CrossRefPubMedGoogle Scholar
  4. Berkov A, Meurer-Grimes B, Purzycki KL (2000) Do Lecythidaceae specialists (Coleoptera, Cerambycidae) shun fetid tree species? Biotropica 32: 440-451Google Scholar
  5. Bittsanszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31: 251-254CrossRefPubMedGoogle Scholar
  6. Bloem E, Haneklaus S, Schnug E (2005) Significance of sulfur compounds in the protection of plants against pests and diseases. J Plant Nutr 28: 763-784CrossRefGoogle Scholar
  7. De Kok LJ (1990) Sulfur metabolism in plants exposed to atmospheric sulfur. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds), Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Fundamental, Environmental and Agricultural Aspects. SPB Academic, The Hague, pp 111-130Google Scholar
  8. De Kok LJ, Stuiver CEE, Stulen I (1998) Impact of atmospheric H2S on plants. In: De Kok LJ, Stulen I (eds), Responses of Plant Metabolism to Air Pollution and Global Change. Backhuys, Leiden, The Netherlands, pp 51-63Google Scholar
  9. De Kok LJ, Tausz M (2001) The role of glutathione in plant reaction and adaptation to air pollutants. In: Grill D, Tausz M, De Kok LJ (eds),  Significance of Glutathione to Plant Adaptation to the Environment. Kluwer Academic, Dordrecht, The Netherlands, pp 123-154Google Scholar
  10. de Vries W (1993) Average critical loads for nitrogen and sulphur and its use in acidification abatement policy in The Netherlands. Water Air Soil Pollut 68: 399-434CrossRefGoogle Scholar
  11. Geng CM, Mu YJ (2006) Carbonyl sulfide and dimethyl sulfide exchange between trees and the atmosphere. Atmos Environ 40: 1373-1383CrossRefGoogle Scholar
  12. Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants. 1982-1993. Phytochemistry 37: 19-42CrossRefGoogle Scholar
  13. Grill D, Tausz M, Strnad B, Wonisch A, Müller M, Raschi A (2003) Thiols in acorns and feeding mites collected at sites with naturally elevated atmospheric sulphur concentrations. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds), Sulfur Transport and Assimilation in Plants: Regulation, Interaction, Signaling. Backhuys, Leiden, The Netherlands, pp 213-215Google Scholar
  14. Guderian R (1977) Air Pollution. Phytotoxicity of Acidic Gases and its Significance in Air Pollution Control. Springer, Berlin, Heidelberg, New York, 127 ppGoogle Scholar
  15. Gullner G, Kömives T (2001) The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In: Grill D, Tausz M, De Kok LJ (eds), Significance of Glutathione in Plant Adaptation to the Environment. Kluwer Academic, Dordrecht, The Netherlands, pp 207-239Google Scholar
  16. Gullner G, Kömives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52: 971-979CrossRefPubMedGoogle Scholar
  17. Hänsch R, Lang C, Riebeseel E, Lindigkeit R, Geßler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2 - Combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281: 6884-6888CrossRefPubMedGoogle Scholar
  18. Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family - redundancy or specialization? Physiol Plant 117: 155-163CrossRefGoogle Scholar
  19. Herschbach C (2003) Whole plant regulation of sulfur nutrition of deciduous trees - influences of the environment. Plant Biol 5: 233-244CrossRefGoogle Scholar
  20. Herschbach C, Rennenberg H (2001) Sulfur nutrition of deciduous trees. Naturwiss 88: 25-36CrossRefPubMedGoogle Scholar
  21. Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16: 250-261CrossRefGoogle Scholar
  22. Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124: 461-473CrossRefPubMedGoogle Scholar
  23. Hogan GD, Rennenberg H (1998) Role and effect of sulfur in tree biology. In: Maynard DG (ed.), Sulfur in the Environment. Marcel Dekker, New York, pp 173-217Google Scholar
  24. Huttunen S, Laine K, Torvela H (1985) Seasonal sulfur contents of pine needles as indexes of air pollution. Ann Bot Fenn 22: 343-359Google Scholar
  25. Johnson DW, Mitchell MJ (1998) Responses of forest ecosystems to changing sulfur inputs. In: Maynard DG (ed.), Sulfur in the Environment. Marcel Dekker, New York, pp 219-262Google Scholar
  26. Judd TS, Attiwill PM, Adams MA (1996) Nutrient concentrations in Eucalyptus: A synthesis in relation to differences between taxa, sites and components. In: Attiwill PM, Adams MA (eds), Nutrition of Eucalypts. CSIRO, Collingwood, Melbourne, pp 123-153Google Scholar
  27. Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz KJ (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120: 63-73CrossRefPubMedGoogle Scholar
  28. Kandler O, Innes JL (1995) Air pollution and forest decline in Central Europe. Environ Pollut 90: 171-180CrossRefPubMedGoogle Scholar
  29. Kesselmeier J, Meixner FX, Hofmann U, Ajavon A-L, Leimbach S, Andreae MO (1993) Reduced sulfur compound exchange between the atmosphere and tropical tree species in southern Cameroon. Biogeochem 23: 23-45Google Scholar
  30. Koprivova A, Kopriva S, Jager D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4: 664-670CrossRefGoogle Scholar
  31. Kopriva S, Hartmann T, Massaro G, Honicke P, Rennenberg H (2004) Regulation of sulfate assimilation by nitrogen and sulfur nutrition in poplar trees. Trees 18: 320-326Google Scholar
  32. Kostner B, Schupp R, Schulze ED, Rennenberg H (1998) Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees. Tree Physiol 18: 1-9PubMedGoogle Scholar
  33. Mattanovich J, Ehrenhöfer M, Schafellner C, Tausz M, Führer E (2001) The role of sulphur compounds for breeding success of Ips typographus L. (Col., Scolytidae) on Norway Spruce (Picea abies [L.] Karst.). J Appl Entomol 125: 425-431CrossRefGoogle Scholar
  34. Meyer AJ, Hell R (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86: 435-457CrossRefPubMedGoogle Scholar
  35. Miszalski Z, Ziegler H (1992) Superoxide dismutase and sulfite oxidation. Z Naturforsch 47: 360-364Google Scholar
  36. Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86: 459-474CrossRefPubMedGoogle Scholar
  37. Pettersson S, Ervik F, Knudsen JT (2004) Floral scent of bat-pollinated species: West Africa vs. the New World. Biol J Linn Soclond 82: 161-168CrossRefGoogle Scholar
  38. Peuke A, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18: 639-648CrossRefGoogle Scholar
  39. Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce (Picea abies L. Karst.) at forest sites in the Ore Mountains (Erzgebirge). Trees 7: 115-122CrossRefGoogle Scholar
  40. Pfanz H, Martinoia E, Lange OL, Heber U (1987) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85: 928-933CrossRefPubMedGoogle Scholar
  41. Posthumus AC (1998) Air pollution and global change: significance and prospectives. In: De Kok LJ, Stulen I (eds), Responses of Plant Metabolism to Air Pollution and Global Change. Backhuys, Leiden, The Netherlands, pp 3-14Google Scholar
  42. Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10: 503-509CrossRefPubMedGoogle Scholar
  43. Rauser WE (2001) The role of glutathione in plant reaction and adaptation to excess metals. In: Grill D, Tausz M, De Kok LJ (eds), Significance of Sulfur in Forest Ecosystems75 Glutathione to Plant Adaptation to the Environment. Kluwer Academic, Dordrecht, The Netherlands, pp 123-154Google Scholar
  44. Rennenberg H, Herschbach C (1995) Sulfur nutrition of trees : a comparison of spruce (Picea abies L.) and beech (Fagus sylvatica L.). Z Pflanzenernähr Bodenkd 158: 513-517Google Scholar
  45. Rodman JE, Soltis PS, Soltis DE, Sytsma KJ, Karol KG (1998) Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot 85: 997-1001CrossRefGoogle Scholar
  46. Schröder P (2001) The role of glutathione and glutathione S-transferases in plant reaction and adaptation to xenobiotics. In: Grill D, Tausz M, De Kok LJ (eds), Significance of Glutathione to Plant Adaptation to the Environment. Kluwer Academic, Dordrecht, The Netherlands, pp 123-154Google Scholar
  47. Sheppard LJ (1994) Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce: review and hypothesis. New Phytol 127: 69-82CrossRefGoogle Scholar
  48. Šircelj H, Tausz M, Grill D, Batič F (2005) Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. J Plant Physiol 162: 1308-1318CrossRefPubMedGoogle Scholar
  49. Tausz M (2001) The role of glutathione in plant response and adaptation to natural stress. In: Grill D, Tausz M, De Kok LJ (eds), Significance of Glutathione to Plant Adaptation to the Environment. Kluwer Academic, Dordrecht, The Netherlands, pp 101-122Google Scholar
  50. Tausz M, Weidner W, Wonisch A, De Kok LJ, Grill D (2003) Uptake and distribution of 35S-sulfate in needles and roots of spruce seedlings as affected by exposure to SO2 and H2S. Environ Exp Bot 50: 211-220CrossRefGoogle Scholar
  51. Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55: 1955-1962CrossRefPubMedGoogle Scholar
  52. Taylor JH, Peterson CA (2005) Ectomycorrhizal impacts on nutrient uptake pathways in woody roots. New For 30: 203-214Google Scholar
  53. Wang JS, He HP, Shen YM, Hao XJ (2005) Sulfur-containing and dimeric flavanols from Glycosmis montana. Tetrahedron Lett 46: 169-172CrossRefGoogle Scholar
  54. Xu X, Bingemer HG, Schmidt U (2002) The flux of carbonyl sulfide and carbon disulfide between the atmosphere and a spruce forest. Atmos Chem Phys 2: 171-181CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michael Tausz
    • 1
  1. 1.School of Forest and Ecosystem ScienceThe University of MelbourneCreswickAustralia

Personalised recommendations