Advertisement

Monitoring Long-term Trends in Sulfate and Ammonium in US Precipitation: Results from the National Atmospheric Deposition Program/National Trends Network

  • Christopher M. B. Lehmann
  • Van C. Bowersox
  • Robert S. Larson
  • Susan M. Larson

Data from the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) indicate significant changes have occurred in precipitation chemistry and the chemical climate in the United States (US). A Seasonal Kendall Trend (SKT) analysis shows statistically significant increases in precipitation ammonium concentrations at 64% of 159 continental US NADP/NTN sites evaluated from Winter 1985 to Fall 2004 (Dec. 1984 – Nov. 2004). Sulfate decreases were widespread, with an SKT analysis indicating statistically significant decreases at 89% of sites evaluated. Ratios of chemical equivalent concentrations of ammonium to sulfate in precipitation have risen to the extent that ammonium now exceeds sulfate over more than half of the continental U.S. on a precipitation-weightedmean annual basis. These trends in the concentrations of ammonium, sulfate, and other species have been accompanied by significant decreases in the frequency of acidic precipitation (pH<5.0) in the last decade.

Keywords

chemical climate precipitation chemistry trend analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Civerolo, K., & Rao, S. T. (2001). Space-time analysis of precipitation-weighted sulfate concentrations over the eastern US. Atmospheric Environment, 35, 5657-5661.CrossRefGoogle Scholar
  2. Gilbert, R. O. (1987). Statistical methods in environmental pollution monitoring. New York: Van Nostrand Reinhold, pp. 225-240.Google Scholar
  3. Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources, U.S. (pp. 338-340). Reston, VA: Geological Survey.Google Scholar
  4. Hov, O., Hjollo, B. A., & Eliassen, A. (1994). Transport distance of ammonia and ammonium in northern Europe:.1. Model description. Journal of Geophysical Research Atmospheres, 99, 18735-18748.CrossRefGoogle Scholar
  5. Knights, J. S., Zhao, F. J., Spiro, B., & McGrath, S. P. (2000). Long-term effects of land use and fertilizer treatments on sulfur cycling. Journal of Environmental Quality, 29, 1867-1874.CrossRefGoogle Scholar
  6. Krupa, S. V. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environmental Pollution, 124,179-221.CrossRefGoogle Scholar
  7. Lamb, D., & Bowersox, V. (2000). The national atmospheric deposition program: An overview. Atmospheric Environment, 34, 1661-1663.CrossRefGoogle Scholar
  8. Lehmann, C. M. B., Bowersox, V. C., & Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environmental Pollution, 35, 347-361.CrossRefGoogle Scholar
  9. Lynch, J. A., Bowersox, V. C., & Grimm, J. W. (2000). Changes in sulfate deposition in eastern USA following implementation of phase I of title IV of the clean air act amendments of 1990. Atmospheric Environment, 34, 1665-1680.CrossRefGoogle Scholar
  10. Malm, W. C., Schichtel, B. A., Ames, R. B., & Gebhart, K. A. (2002). A 10-year spatial and temporal trend of sulfate across the United States. Journal Geophysical Research, 107,4627-4646.CrossRefGoogle Scholar
  11. Millard, S. P., & Neerchal, N. K. (2000). Environmental statistics with S-Plus (pp. 680-685). Boca Raton: CRC.Google Scholar
  12. National Atmospheric Deposition Program (NADP) (1995). Notification of important change in NADP/NTN procedures on 11 January 1994. Illinois State Water Survey, Champaign, IL, U.S.A., http://nadp.sws.uiuc.edu/documentation/advisory.html, accessed 16 January 2006.
  13. National Atmospheric Deposition Program (NADP) (2005). National trends network. Illinois State Water Survey, Champaign, IL, U.S.A., http://nadp.sws.uiuc.edu/NTN, accessed 16 January 2006.
  14. Nilles, M. A., Conley, B. E. (2001). Changes in the chemistry of precipitation in the United States, 1981-1998. Water, Air, and Soil Pollution, 130, 409-414.CrossRefGoogle Scholar
  15. Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics: From air pollution to climate change (pp. 529-531, 1030-10330). New York: Wiley.Google Scholar
  16. Sisterson, D. L., Bowersox, V. C., & Olsen, A. R. (1990). Wet deposition of atmospheric pollutants. National Acid Precipitation Assessment Program, Washington, D.C., U. S.A., 6-39 to 6-222 and 6-A1 to 6-A46.Google Scholar
  17. Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., et al. (2003). Response of surface water chemistry to the clean air act amendments of 1990. United States Environmental Protection Agency, Research Triangle Park, NC, U.S.A., pp. 78.Google Scholar
  18. United States Environmental Protection Agency (U.S. EPA) (2005).1970-2002 Average annual emissions, all criteria pollutants. Washington, D.C., http://www.epa.gov/ttn/chief/trends/index.html, accessed January 16, 2006.
  19. Walker, J. T., Aneja, V. P., & Dickey, D. A. (2000). Atmospheric transport and wet deposition of ammonium in North Carolina. Atmospheric Environment, 34, 3407-3418.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2007

Authors and Affiliations

  • Christopher M. B. Lehmann
    • 1
  • Van C. Bowersox
    • 1
  • Robert S. Larson
    • 1
  • Susan M. Larson
    • 2
  1. 1.National Atmospheric Deposition ProgramIllinois State Water SurveyChampaignUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations