Skip to main content

Relationships Between Macroinvertebrate Assemblages of Stony Littoral Habitats and Water Chemistry Variables Indicative of Acid-stress

  • Chapter
Acid Rain - Deposition to Recovery

Gradient analyses were used to correlatively determine the importance of acid-related variables for littoral macroinvertebrate assemblages. To better ascertain the effects of acidity on macroinvertebrate assemblages we removed sites judged to be affected by other stressors such as agriculture, urbanization and liming. PCA of land use and water chemistry confirmed the presence of an acidity gradient; several acidity variables (e.g. pH and buffering capacity) were strongly correlated with the first PC axis, which explained Ca 32% of the variance in the environmental data. Partial constrained ordination of littoral macroinvertebrate assemblages with water chemistry, after removing the effect of other confounding variables (e.g. land use/type), showed that acidity variables accounted for significant amounts of among-lake variability in assemblage structure. Regression of canonical scores (a metric of community composition) and diversity with pH and alkalinity was used to visually determine ecological breakpoints or threshold values. Five classes were established for pH: pH≺5 (extremely acid), 5≺pH⩽5.6 (very acid), 5.6≺pH⩽6.2 (acid), 6.2≺pH⩽6.8 (weakly acid) and pH≻6.8 (neutral-alkaline). Similarly, three classes were determined for alkalinity/acidity: ≺0.02, 0.02–0.1 and ≻0.1 meq/L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernes, C. (1991). Acidification and liming of Swedish freshwaters. Swedish Environmental Protection Agency. Monitor, 12, 144.

    Google Scholar 

  • Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045-1055.

    Article  Google Scholar 

  • European Committee for Standardization (1994). Water quality-methods for biological sampling - guidance on handnet sampling of aquatic benthic macro-invertebrates. SS-EN-27-828. European Committee for Standardization.Brussels, Belgium.

    Google Scholar 

  • Fölster, J., Andren, C., Bishop, K., Buffam, I., Cory, N., Goedkoop, W., et al. (this issue). New environmental quality criteria for acidification in lakes in Sweden - an application of studies on the relationship between biota and water chemistry. Water, Air and Soil Pollution.

    Google Scholar 

  • Halvorsen, G. A., Heegaard, E., Fjellheim, A., & Raddum, G. G. (2003). Tracing recovery from acidification in the western Norwegian Nausta Watershed. Ambio, 32, 235-239.

    Google Scholar 

  • Hill, M. O. (1979). TWINSPAN - A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ithaca: Cornell University.

    Google Scholar 

  • Lien, L., Raddum, G. G., Fjellheim, A., & Henriksen, A. (1996). A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. The Science of the Total Environment, 177, 173-193.

    Article  CAS  Google Scholar 

  • Lingdell, P.-E., & Engblom, E. (2002). Bottendjur som indikator på kalkningseffekter. Swedish EPA report 5235. Naturvårdsverkets förlag.

    Google Scholar 

  • Lükewille, A., Jeffries, D., Johannessen, M., Raddum, G., Stoddard, J., & Traaen, T. S. (1997). The nine year report: acidification of surface water in Europe and North America. Long-term Developements (1980s and 1990s), Norsk institut for vannforskning (NIVA), 1997; 168pp.

    Google Scholar 

  • Økland, J., & Økland, K. A. (1986). The effects of acid deposition in benthic animals in lakes and streams. Experientia, 42, 471-486.

    Article  Google Scholar 

  • Ormerod, S. J., Boole, P., McCahon, C. P., Weatherley, N. S., Pascoe, D., & Edwards, R. W. (1987). Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium. Freshwater Biology, 17, 341-356.

    Article  CAS  Google Scholar 

  • Raddum, G. G., & Fjellheim, A. (1984). Acidification and early warning organisms in freshwater in western Norway. Verhandlungen der Internationalen Vereiningung der Theoretichen und Angewandte Limnologi, 22, 1973-1980.

    CAS  Google Scholar 

  • Raddum, G. G., & Skjelkvåle, B. L. (1995). Critical limits of acidification to invertebrates in different regions of Europé. In Aquatic fauna: Dose/response and long term trends. CLRTAP-International cooperative programme on assessment and monitoring of acidification of rivers and lakes (pp. 26-34). Norway: University of Bergen.

    Google Scholar 

  • Rosseland, B. O., Eldhuset, T. D., & Staurnes, M. (1990). Environmental effects to aluminium. Environmental Geochemistry and Health, 12, 17-27.

    Article  CAS  Google Scholar 

  • Shannon, D. E. (1948). A mathematical theory of communication. Bell System Technological Journal, 27,379-423, 623-656.

    Google Scholar 

  • Stendera, S., & Johnson, R. K. Recovery trends of phytoplankton and benthic macroinvertebrate communities in acidified and reference boreal lakes - a multihabitat assessment (submitted).

    Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401, 575-578.

    Article  CAS  Google Scholar 

  • ter Braak, C. F. J. (1988). CANOCO - a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondence analysis, principal component analysis and redundancy analysis (version 3.15). Agricultural Mathematics Group, Wageningen, The Netherlands.

    Google Scholar 

  • ter Braak, C. F. J. (1990). Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen, The Netherlands.

    Google Scholar 

  • Wilander, A. (1997). Referenssjöarnas vattenkemi under 12 år; tillstånd och trender. Naturvårdsverket Rapport, 4652, 79 (in Swedish).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Johnson, R.K., Goedkoop, W., Fölster, J., Wilander, A. (2007). Relationships Between Macroinvertebrate Assemblages of Stony Littoral Habitats and Water Chemistry Variables Indicative of Acid-stress. In: Brimblecombe, P., Hara, H., Houle, D., Novak, M. (eds) Acid Rain - Deposition to Recovery. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5885-1_36

Download citation

Publish with us

Policies and ethics