Modeling Acidification Recovery on Threatened Ecosystems: Application to the Evaluation of the Gothenburg Protocol in France

  • David Moncoulon
  • Anne Probst
  • Liisa Martinson

To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition timeseries (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and [Al]/[BC] ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds.

Keywords

acidification atmospheric deposition France recovery SAFE model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alveteg, M., Walse, C., & Warfvinge, P. (1998). Reconstructing historical atmospheric deposition and nutrient uptake from present day value using MAKEDEP. Water, Air and Soil Pollution, 104(3-4), 269-283.CrossRefGoogle Scholar
  2. Blank, L. W. (1985). A new type of forest decline in Germany. Nature, 314, 311-314.CrossRefGoogle Scholar
  3. Brêthes, A., & Ulrich, E. (1997). RENECOFR - Caractéristiques pédologiques des 102 peuplements du réseau. Office National des Forêts (Eds.), p. 573.Google Scholar
  4. Citepa (2003). Emissions dans l’air en France. Métropole. Substances impliquées dans les phénomènes d’acidification, d’eutrophisation et de photochimie. http://www.citepa.org/pollution/index.htm.
  5. Croisé, L., Ulrich, E., Duplat, P., & Jaquet, O. (2005). Two independent methods for mapping bulk deposition in France. Atmospheric Environment, 39(21), 3923-3941.CrossRefGoogle Scholar
  6. Dambrine, E., Ulrich, E., Cenac, P., Durand, P., Gauquelin, T., Mirabel, P., et al. (1995). Atmospheric deposition in France and possible relation to forest decline. In G. Landmann & M. Bonneau (Eds.), Forest decline and atmospheric deposition effects in the French mountains (pp. 177-199). Berlin, Heidelberg, New York: Springer, 461.Google Scholar
  7. Hettelingh, J. P., Posch, M., & De Smet, P. A. M. (2001). Multi-effect critical loads used in multi-pollutant reduction agreements in Europe. Water Air and Soil Pollution, 130, 1133-1138.CrossRefGoogle Scholar
  8. Iversen, T. (1993). Modelled and measured transboundary acidifying pollution in Europe - Verification and trends. Atmospheric Environment, 27A, 889-920.Google Scholar
  9. Landmann, G. & Bonneau, M. (Eds.) (1995). Forest decline and atmospheric deposition effects in the French mountains.Google Scholar
  10. Moncoulon, D., Probst, A., & Party, J. P. (2004). Critical loads of acidity: Importance of weathering, atmospheric deposition and vegetation uptake for ecosystem sensitivity determination. C.R. Geoscience, 336, 1417-1426.CrossRefGoogle Scholar
  11. Nilsson, J., & Grennfelt, P. (1988). Critical loads for nitrogen and sulphur. Miljorapport 11. Copenhagen: Nordic Council of Ministers.Google Scholar
  12. Party (1999). Acidification des sols et des eaux de surface des écosystèmes forestiers français: facteurs, mécanismes et tendances. Taux d’altération sur petits bassins versants silicatés. Application au calcul des charges critiques d’acidité., thèse de l’Université Louis Pasteur de Strasbourg, 247p.Google Scholar
  13. Probst, A., Fritz, B., & Viville, D. (1995). Mid-term trends in acid precipitation, streamwater chemistry and element budgets in the Strenbach catchment (Vosges mountains, France). Water, Air and Soil Pollution, 79, 39-59.CrossRefGoogle Scholar
  14. Probst, A., Massabuau, J. C., Probst, J. L., & Fritz, B. (1990). Acidification des eaux de surface sous l’influence des précipitations acides : rôle de la végétation et du substratum, conséquences pour les populations de truites. Le cas des ruisseaux des Vosges. C.R. Acad. Sci. Paris, 311,405-411.Google Scholar
  15. Probst, A., Party, J. P., Fevrier, C., Dambrine, E., Thomas, A. L., & Stussi, J. M. (1999). Evidence of springwater acidification in the Vosges mountains (north-east of France): Influence of bedrock buffering capacity. Water, Air and Soil Pollution, 114, 395-411.CrossRefGoogle Scholar
  16. Schöpp, W., Posch, M., Mylona, S., & Johansson, M. (2003). Long term development of acid deposition (1880-2030) in sensitive freshwater regions in Europe. Hydrology and Earth Science Systems, 7, 436-446.CrossRefGoogle Scholar
  17. Sverdrup, & Warfvinge (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca+Mg+K)/Al ratio. Reports in ecology and environmental engineering, Lund University, Department of Chemical Engeneering II.Google Scholar
  18. Sverdrup, H., & Warfvinge, P. (1995). Estimating field weathering rates using laboratory kinetics. Reviews in Mineralogy, 31, 485-541.Google Scholar
  19. Uba (2004). Manual on methodologies and criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. UN-ECE Convention on Long Range Transboundary Air Pollution, Federal Environmental Agency (Umweltbundesamt), Berlin.Google Scholar
  20. Warfvinge, P., Falkengren-Grerup, U., & Sverdrup, H. (1993). Modelling long-term base cation supply to acidified forest stands. Environmental Pollution, 80, 209-220.CrossRefGoogle Scholar
  21. Wright, R. F., & Snekvik, E. (1978). Acid precipitation: Chemistry and fish population in 700 lakes in southern-most Norway. Verhandlang der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 20, 765-775.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2007

Authors and Affiliations

  • David Moncoulon
    • 1
  • Anne Probst
    • 1
    • 3
  • Liisa Martinson
    • 2
  1. 1.Laboratoire des Mécanismes de Transfert en GéologieUMR 5563, CNRS-IRD-Université Paul SabatierToulouseFrance
  2. 2.Lund University Centre for Sustainability StudiesLundSweden
  3. 3.ECOLAB UMR 5245CNRS-INPT-Université Paul SabatierCastanet, Tolosan, CedexFrance

Personalised recommendations