Skip to main content

Response of Drinking-water Reservoir Ecosystems to Decreased Acidic Atmospheric Deposition in SE Germany: Signs of Biological Recovery

  • Chapter

Strongly decreasing atmospheric emissions and acidic deposition during the 1990s have initiated chemical reversal from acidification in several drinking-water reservoirs of the Erzgebirge, SE Germany. We studied responses of phytoplankton, zooplankton and fish stocks in five reservoirs and at enclosure scale after experimental neutralization of 1,200 m3 of lake water. About 4 months after this treatment, diatoms and cryptomonads replaced the predominating chrysophytes and dinoflagellates. The colonization by acid-sensitive species of green algae, cryptomonads, rotifers and Cladocera (e.g. Bosmina longirostris) is explained by the occurrence of dormant stages or by survival of individuals in very low abundances. Analogous to the enclosure experiment, three reservoirs showed significantly (p<0.01) falling trends of chlorophyll a and phytoplankton biovolume, mainly due to the decline of dinoflagellates. Picoplankton and diatoms increased slightly in two reservoirs. The zooplankton communities were dominated by rotifers and small Cladocera. Representatives of the genus Daphnia were lacking. Two reservoirs were re-colonized by zooplanktivorous fish populations of either perch (Perca fluviatilis) or sunbleak (Leucaspius delineatus). The latter exhibited extremely high fluctuating abundance and biomass and even suffered from a population crash.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almer, B., Dickson, W., Ekström, C., Hörnström, E., & Miller, U. (1974). Effects of acidification on Swedish lakes. Ambio: A Journal of the Human Environment, 3, 30–36.

    Google Scholar 

  • Appelberg, M., Bergquist, B. C., & Degerman, E. (2000). Using fish to assess environmental disturbance of Swedish lakes and streams - a preliminary approach. Verh. Internat. Verein. Limnol., 27, 311–315.

    Google Scholar 

  • Bangenal, T. B., & Tesch, F. W. (1978). Age and growth. In T. B. Bangenal (Ed.), Methods for the assessment of fish production in fresh waters (pp. 101–136). Oxford, UK: Blackwell.

    Google Scholar 

  • Degerman, E., Henrikson, L., Herrmann, J., & Nyberg, P. (1994). The effects of liming on aquatic fauna. In L. Henrikson & Y. W. Brodin (Eds.), Liming of acidified surface waters a swedish synthesis. Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Dillon, P. J., Yan, N. D., Schneider, W. A., & Conroy, N. (1979). Acidic lakes in Ontario, Canada: Characterization, extend and responses to base and nutrient additions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13, 317–336.

    CAS  Google Scholar 

  • Eriksson, F., Hörnström, H., Mossberg, P., & Nyberg, P. (1983). Ecological effects of lime treatment of acidified lakes and rivers in Sweden. Hydrobiologia, 101, 145–164.

    Article  Google Scholar 

  • Foote, K. G., Knudsen, H. P., Vestnes, G., MacLennan, D. N., & Simmonds, E. J. (1987). Calibration of acoustic instruments for fish density estimation. ICES Cooperative Research Report, 144, 1–70.

    Google Scholar 

  • Fott, J., Prazakova, M., Stuchlik, E., & Stuchlikova, Z. (1994). Acidification of lakes in Sumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia, 274, 37–47.

    Article  CAS  Google Scholar 

  • Freier, K., & Bollenbach, M. (2001). Auswirkung eines neuartigen Pufferungsverfahrens auf die Dominanzstruktur des phytound zooplanktons in einer versauerten Talsperre. Deutsche Gesellschaft für Limnologie (DGL), Tagungsbericht, 2000, 577–581.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Van Nostrand.

    Google Scholar 

  • Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Research Resources, 20, 727–732.

    Article  Google Scholar 

  • Hirsch, R. M., Slack, J. R., & Smith, R. A. (1982). Techniques of trend analyses for monthly water quality data. Water Research Resources, 18, 107–121.

    Article  Google Scholar 

  • Hoehn, E., Clasen, J., Scharf, W., Ketelaars, H. A. M., Nienhüser, A. E., Horn, H., et al. (1998). Erfassung und bewertung von planktonorganismen. Oldenbourg Verlag, p. 151.

    Google Scholar 

  • Holt, C. A., & Yan, N. D. (2003). Recovery of crustacean zooplankton communities from acidification in Killarney Park, Ontario, 1971–2000: pH 6 as a recovery goal. Ambio:A Journal of the Human Environment, 32, 203–207.

    Google Scholar 

  • Hultberg, H., & Andersson, I. (1982). Liming of acidified lakes - induced long-term changes. Water, Air and Soil Pollution, 18,333–342.

    Article  Google Scholar 

  • Keitel, M. (1995). Langzeitbetrachtung der Gewässerversauerung - Fallstudie im Erzgebirge. Wasser & Boden, 47, 27–33.

    Google Scholar 

  • Keller, W., & Yan, N. D. (1998). Biological recovery from lake acidification: Zooplankton communities as a model of patterns and processes. Restoration Ecology, 6, 364–375.

    Article  Google Scholar 

  • Keller, W., Yan, N. D., Somers, K. M., & Henneberry, J. H. (2002). Crustacean zooplankton communities in lakes recovering from acidification. Canadian Journal of Fisheries and Aquatic Sciences, 59, 726–735.

    Article  CAS  Google Scholar 

  • Libiseller, C. (2002). MULTMK/PARTMK, a program for the computation of Multivariate and Partial Mann-Kenndall Test. Retrieved from http://www.mai.liu.se/∼cllib/welcome/PMKtest.html.

  • McLennan, D. N., & Simmonds, E. J. (1992). Fisheries acoustics. London, UK: Chapman & Hall, p. 325.

    Google Scholar 

  • Niinioja, R., Ahtiainen, M., & Holopainen, A.-L. (1990). Liming of the acidified lake Valkealampi in eastern Finland: Effects on water chemistry and phytoplankton. In P. Kauppi, P. Antilla & K. Kentämies (Eds.), Acidification in Finland (pp. 1127–1143). Berlin Heidelberg New York: Springer.

    Google Scholar 

  • Nyberg, K., Vuorenmaa, J., Rask, M., Mannio, J., & Raitaniemi, J. (2001). Patterns in water quality and fish status of some acidified lakes in southern Finland during a decade: Recovery proceeding. Water, Air and Soil Pollution, 130, 1373–1378.

    Article  Google Scholar 

  • Schaumburg, J. (2000). Long term trends in biology and chemistry of the acidified Bavarian Forest Lakes. Silva Gabreta, 4, 29–40.

    Google Scholar 

  • Schindler, D. W., Frost, T. M., Mills, K. H., Chang, P. S. S., Davies, I. J., Findlay, D. L., et al. (1991). Comparison between experimentally- and atmospherically-acidified lakes during stress and recovery. Proceedings of the Royal Society of Edinburgh, 97, 193–226.

    Google Scholar 

  • Tammi, J., Appelberg, M., Beier, U., Hesthagen, T., Lappalainen, A., & Rask, M. (2003). Fish status survey of nordic lakes: Effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio: A Journal of Human Environment, 32, 98–105.

    Google Scholar 

  • Tammi, J., Rask, M., Vuorenmaa, J., Lappalainen, A., & Vesala, S. (2004). Population responses of perch (Perca fluvialilis) and roach (Rutilus rutilus) to recovery from acidification in small Finnish lakes. Hydrobiologia, 528, 107–122.

    Article  CAS  Google Scholar 

  • Ulrich, K. U., Paul, L., & Meybohm, A. (2006). Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: Trends of chemical reversal. Environmental Pollution, 141, 42–53.

    Article  CAS  Google Scholar 

  • Ulrich, K. U., Paul, L., Striebel, T., Dimitriadis, A., Knolle, M., & Belouschek, P. (2001). Water treatment in an acidified reservoir: Diacidification, buffering and precipitation of pollutants (in German with English abstract). Vom Wasser, 96,159–172.

    CAS  Google Scholar 

  • Vrba, J., Kopacek, J., & Fott, J. (2000). Long-term limnological research of Bohemian Forest lakes and their recent status. Silva Gabreta, 4, 7–28.

    Google Scholar 

  • Vrba, J., Kopacek, J., Fott, J., Kohout, L., Nedbalova, L., Prazakova, M., et al. (2003). Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). The Science of the Total Environment, 310, 73–85.

    Article  CAS  Google Scholar 

  • Willuweit, T., Weißgräber, S., Belouschek, P., & Lönz, P. (1995). A new method for successful water treatment (in German with English abstract). Vom Wasser, 85, 241–250.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Meybohm, A., Ulrich, KU. (2007). Response of Drinking-water Reservoir Ecosystems to Decreased Acidic Atmospheric Deposition in SE Germany: Signs of Biological Recovery. In: Brimblecombe, P., Hara, H., Houle, D., Novak, M. (eds) Acid Rain - Deposition to Recovery. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5885-1_30

Download citation

Publish with us

Policies and ethics