ENVIRONMENTAL RISK AND ASSESSMENT MODELLING – SCIENTIFIC NEEDS AND EXPECTED ADVANCEMENTS

  • ALEXANDER BAKLANOV
Part of the NATO Security Through Science Series book series

Abstract

Environmental risk and impact assessment and prediction modelling is one of the most important instruments in the environmental security management and preparedness, and it needs further development in the quickly changing world and society. Most of the previous studies in this field considered, as a rule, only separate aspects of the risk and impact assessments. New realities and problems in the environmental security, supercomputer facilities, request a new generation of the assessments and prediction tools for the risk and impact assessments. Some new trends, advantages and perspectives in the risk and impact assessment and forecasting methodology (including the integrated and multidisciplinary approaches, health and combined effects of different risk and impact factors, source-receptor, sensitivity and vulnerability problems, and meteorological advances for urban air quality forecasting and assessments) are discussed in the paper.

Keywords

Sulphide Europe Transportation Ozone Radionuclide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIRES, 2001, AIRES in ERA, European Commission, EUR 19436.Google Scholar
  2. AR-NARP, 2003, Atmospheric transport pathways, vulnerability and possible accidental consequences from the nuclear risk sites in the European Arctic (Arctic Risk) NARP project; http://glwww.dmi.dk/f+u/luft/eng/arctic-risk/main.html.Google Scholar
  3. Baklanov, A., 1988, Numerical modelling in mine aerology, Apatity: KSC RAS, 200 p. (in Russian)Google Scholar
  4. Baklanov, A., 2000, Modelling of the atmospheric radionuclide transport: local to regional scale. Numerical Mathematics and Mathematical Modelling, INM RAS, Moscow, Russia, 2: 244–266.Google Scholar
  5. Baklanov, A., 2002, Methodologies for multidisciplinary nuclear risk and vulnerability assessments in the Arctic and Sub-Arctic. NATO Science Series, Ser IV Earth and Env. Sci., 31(2003): 385–405.Google Scholar
  6. Baklanov, A., 2004, European FUMAPEX project: ‘Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure’, European Association for the Science of Air Pollution, EURASAP Newsletter, 52: 6–36.Google Scholar
  7. Baklanov, A. (Editor), 2006a, Enviro-RISKS: Man-induced Environmental Risks: Monitoring, Management and Remediation of Man-made Changes in Siberia. EU Coordination Action 1st Report. DMI Sci. Report, Feb. 2006, Copenhagen, 89 p.Google Scholar
  8. Baklanov, A. (Editor), 2006b, FUMAPEX: Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure. EC 5FP project Final Sci. Report. In 3 volumes. DMI, Copenhagen, Jan. 2006.Google Scholar
  9. Baklanov, A. and Bergman, R., 1999, Radioactive Sources in the Barents Euro-Arctic Region: Are there reasons to be concerned? Chapter XI at the NEBI Yearbook: North European and Baltic Sea Integration, Copenhagen, Springer-Verlag, pp. 171–192.Google Scholar
  10. Baklanov A.A. and Gordov, E.P., 2005, Enviro–RISKS - Man-induced Environmental Risks: Monitoring, Management and Remediation of Man-made Changes in Siberia (FP6 INCO CA project, 2005–2008). The Bulletin of the Russian National Committee for IGBP, No 4, 2005, Vladivostok, Dalnauka Printing House.Google Scholar
  11. Baklanov, A., and Mahura, A., 2004, Assessment of possible airborne impact from risk sites: methodology for probabilistic atmospheric studies, Atmospheric Chemistry and Physics, 4(2): 485–495.Google Scholar
  12. Baklanov, A., and Sørensen, J.H., 2001, Parameterisation of radionuclide deposition in atmospheric dispersion models, Phys. Chem. Earth (B) 26: 787–799.Google Scholar
  13. Baklanov, A., Bergman, R. and Segerstahl, B., 1996, Radioactive sources in the Kola region: Actual and potential radiological consequences for man, IIASA, Final Report, Laxenburg, Austria, December 1996, 260 p.Google Scholar
  14. Baklanov, A., Mahura, A., Jaffe, D., Thaning, L., Bergman, R., Andres, R., 2002a, Atmospheric Transport Patterns and Possible Consequences for the European North after a Nuclear Accident. Journal of Environment Radioactivity, 60: 23–48.CrossRefGoogle Scholar
  15. Baklanov, A., Rasmussen, A., Fay, B., Berge, E. and Finardi, S., 2002b, Potential and Shortcomings of Numerical Weather Prediction Models in Providing Meteorological Data for Urban Air Pollution Forecasting. Water, Air and Soil Poll.: Focus, 2(5–6): 43–60.CrossRefGoogle Scholar
  16. Baklanov A., Mahura A., Sørensen J.H., 2003, Methodology for Prediction and Estimation of Consequences of Possible Atmospheric Releases of Hazardous Matter: Kursk Submarine Study. Atmospheric Chemistry and Physics, 3: 747–762.Google Scholar
  17. Baklanov, A., Gross, A., Sørensen, J.H., 2004, Modelling and forecasting of regional and urban air quality and microclimate. J. Computational Technologies, 9: 82–97.Google Scholar
  18. Baklanov, A., Sørensen, J.H., Hoe, S., Amstrup, B., 2005a, Urban meteorological modelling for nuclear emergency preparedness. J. Environment Radioactivity, 85: 154–170.CrossRefGoogle Scholar
  19. Baklanov, A., Sørensen, J.H., and Mahura, A., 2005b, Long-Term Dispersion Modelling: Methodology for Probabilistic Atmospheric Studies, Environmental Modelling and Assessment, In Review.Google Scholar
  20. Baklanov, A., Mestayer, P., Clappier, A., Zilitinkevich, S., Joffre, S., Mahura, A., 2005c, On parameterizations of urban atmosphere sublayer in meteorological models. Atmospheric Chemistry and Physics Discussions, 5: 12119–12176.Google Scholar
  21. Baklanov, A., Hänninen, O., Slørdal, L.H., Kukkonen, J., Bjergene, N., Fay, B., Finardi, S., Hoe, S.C., Jantunen, M., Karpinen, A., Rasmussen, A., Skouloudis, A., Sokhi, R.S., Sørensen, J.H., 2006a, Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics Discussions, 6: 1867–1913.Google Scholar
  22. Baklanov, A., Morozov, S., Mahura, A., Rigina, O., Nazarenko, L., Tausnev, N., Koshkin, V., Fedorenko, Yu., 2006b, Modelling of possible environmental consequences of accidents on nuclear risk sites in the European Arctic. Publisher: Russian Academy of Sciences. (In Russian)Google Scholar
  23. Berge, E., Walker, S.-E., Sorteberg, A., Lenkopane, M., Eastwood, S., Jablonska, H.I. and Køltzow, M.Ø., 2002, A real-time operational forecast model for meteorology and air quality during peak air pollution episodes in Oslo, Norway. Water, Air and Soil Pollution Focus, 2: 745–757.CrossRefGoogle Scholar
  24. Bergman, R. and Baklanov, A., 1998, Radioactive sources in main radiological concern in the Kola-Barents region. FRN/FOA publication, Stockholm, 1998. 80 p.Google Scholar
  25. Byun, D.W. and Ching, J.K.S. (Editors), 1999, Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modelling System. EPA/600/R-99/030, Washington, DC.Google Scholar
  26. Chenevez, J., Baklanov, A., Sørensen, J.H., 2004, Pollutant transport schemes integrated in a numerical weather prediction model: Model description and verification results. Meteorological Applications, 11(3): 265–275.CrossRefGoogle Scholar
  27. Coulson, G., Bartonova, A. Bøhler, T., Broday, D.M., Colbeck, I., Fløisand, I., Fudala, J., Hollander, W., Housiadas, Ch., Lazaridis, M. and Smolik, J., 2005, Exposure Risks from Pollutants in Domestic Environments: The Urban Exposure Project, Indoor Built. Environ. 14(3–4): 209–213.CrossRefGoogle Scholar
  28. Galmarini, S., R. Bianconi, W. Klug, T. Mikkelsen, R. Addis, S. Andronopoulos, P. Astrup, A. Baklanov, J. Bartniki, J.C. Bartzis, R. Bellasio, F. Bompay, R. Buckley, M. Bouzom, H. Champion, R. D’Amours, E. Davakis, H. Eleveld, G.T. Geertsema, H. Glaab, M. Kollax, M. Ilvonen, A. Manning, U. Pechinger, C. Persson, E. Polreich, S. Potemski, M. Prodanova, J. Saltbones, H. Slaper, M.A. Sofiev, D. Syrakov, J.H. Sørensen, L. Van der Auwera, I. Valkama, R. Zelazny, 2004, Ensemble Dispersion Forecasting, Part I: Concept, Approach and Indicators. Atmos. Environ. 38: 4607–4617.CrossRefGoogle Scholar
  29. Graziani, G., Klug, W. and Moksa, S., 1998, Real-Time Long-Range Dispersion Model Evaluation of the ETEX First Release. EU JRC.Google Scholar
  30. Gross, A. and Baklanov A., 2004, Modelling the influence of dimethyl sulphide on the aerosol production in the marine boundary layer, International Journal of Environment and Pollution, 22: 51–71.Google Scholar
  31. Hänninen, O., 2005, Probabilistic Modelling of PM2.5 Exposures in the Working Age Population of Helsinki Metropolitan Area. Publications of the National Public Health Institute (KTL) A10/2005. PhD dissertation.Google Scholar
  32. Hänninen, O.O., Lebret, E., Tuomisto, J.T., Jantunen, M.J., 2005, Characterization of model error in the simulation of PM2.5 exposure distributions of the working age population in Helsinki, Finland. Journal of the Air & Waste Management Association, 55: 446–457.Google Scholar
  33. Hoe S., Müller, H. and Thykier-Nielsen, S., 2000, Integration of dispersion and radioecological modelling in ARGOS NT. In: Proceedings of IRPA 10, Tenth International Congress of the International Radiation Protection Association, Hiroshima, Japan, May 14–19, 2000.Google Scholar
  34. Hoe, S.C., Müller, H., Gering, F., Thykier-Nielsen, S. and Sørensen, J.H., 2002, ARGOS 2001 a Decision Support System for Nuclear Emergencies. In: Proceedings of the Radiation Protection and Shielding Division Topical Meeting, April 14–17, 2002, Santa Fe, New Mexico, USA.Google Scholar
  35. IPCC, 1996, Impacts, adaptations and mitigation of climate change: scientific technical analyses. In: Watson RT, Zinyowera MC, Moss RH, editors. Contributing working group II, 2nd assessment report, Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge Univ. Press; 880 p.Google Scholar
  36. IPCC, 2001, Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Contributing working group I, 3rd assessment report, Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge Univ. Press. 881 p.Google Scholar
  37. Jacobson, M., 2001, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409: 695–697.CrossRefGoogle Scholar
  38. Kousa, A., Oglesby, L., Koistinen, K., Kunzli, N., Jantunen, M., 2002, Exposure chain of urban air PM2.5 - associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environment, 36: 3031–3039.CrossRefGoogle Scholar
  39. Lauritzen, B., Baklanov, A., Mahura, A., Mikkelsen, T., Sørensen, J.H., 2006, K-model description of probabilistic long-range atmospheric transport in the Northern Hemisphere. Atmospheric Environment, accepted.Google Scholar
  40. Mahura A. and Baklanov A., 2003, Probabilistic Indicators of Atmospheric Transport for Regional Monitoring and Emergency Preparedness Systems. Environment International, 29/8: 1063–1069.Google Scholar
  41. Mahura A.G., Baklanov, A.A., Sørensen, J.H., Parker, F.L., Novikov, V., Brown, K., Compton, K.L., 2005a, Assessment of Atmospheric Transport and Deposition Patterns Related to Russian Pacific Fleet Operations. Environmental Monitoring and Assessment, 101: 261–287.CrossRefGoogle Scholar
  42. Mahura, A., Baklanov, A., Sørensen, J.H., 2005b, Long-Term Dispersion Modelling: Assessment of Atmospheric Transport and Deposition Patterns from Nuclear Risk Sites in Euro-Arctic Region, Journal of Computational Technology, 10: 112–134.Google Scholar
  43. Mahura, A., Baklanov, A., Sørensen, J.H., Svetlov, A., Koshkin, V., 2006, Assessment of long-range transport and deposition from Cu-Ni smelters in Russian North. The same issue.Google Scholar
  44. Marchuk, G.I., 1982, Mathematical modelling in the environmental problems. Moscow, Nauka (in Russian).Google Scholar
  45. Marchuk, G.I., 1995, Adjoint equations and analysis of complex systems. Kluver Academic Publication.Google Scholar
  46. NAS, 2001, Climate change science: an analysis of some key questions. Washington (DC): National Academy of Sciences National Academy Press. 28 p.Google Scholar
  47. Ott, W.R., 1995, Human exposure assessment: the birth of a new science. Journal of Exposure Analysis and Environmental Epidemiology 5: 449–472.Google Scholar
  48. Penenko, V. and Baklanov, A., 2001, Methods of sensitivity theory and inverse modelling for estimation of source term and nuclear risk/vulnerability areas Lecture Notes in Computer Science, 2074: 57–66.Google Scholar
  49. Penenko, V., Baklanov, A. and Tsvetova, E., 2002, Methods of sensitivity theory and inverse modelling for estimation of source term. Future Generation Computer Systems, 18: 661–671.CrossRefGoogle Scholar
  50. Penenko, V.V., 1981, Methods of numerical modelling of the atmospheric processes. Leningrad, Gidrometeoizdat (in Russian).Google Scholar
  51. Penner J.E. et al., 1998, Climate forcing by carbonaceous and sulphate aerosols, Clim. Dynamics, 14: 839–851.CrossRefGoogle Scholar
  52. Pudykiewicz, J.A., 1998: Application of adjont tracer transport equations for evaluating source parameters, Atmos. Environ. 32: 3039–3050.CrossRefGoogle Scholar
  53. Rigina, O., and Baklanov, A., 2002, Regional radiation risk and vulnerability assessment by integration of mathematical modelling and GIS-analysis, Environment International, 27: 527–540.CrossRefGoogle Scholar
  54. Robertson, L. and Lange, J., 1998, Sourse function estimate by means of a variational data data assimilation applied to the ETEX-I tracer experiment, Atmos. Environ. 32: 4219.CrossRefGoogle Scholar
  55. RODOS, 2000, RODOS: Decision support system for off-site nuclear emergency management in Europe. Edited by J. Ehrhardt and A. Weiss. Final project report. EC DG Research, EURATOM, EUR 19144 EN, 259 p.Google Scholar
  56. Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J., Bisanti, L., Zmirou, D., Vonk, J.M., Pekkanen, J., Goodman, P., Paldy, A., Schindler, C., Katsouyanni, K., 2005, Estimating the Exposure-Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project. Env Health Pers., 113(1): 88–95.Google Scholar
  57. Semazzi, F., 2003, Air quality research: perspective from climate change modelling research. Environment International 29: 253–261.CrossRefGoogle Scholar
  58. Shine, K.P., 2000, Radiative forcing of climate change, Space Sci. Rev. 94: 363–373.CrossRefGoogle Scholar
  59. Sørensen J.H., 1998, Sensitivity of the DERMA Long-Range Gaussian Dispersion Model to Meteorological Input and Diffusion Parameters, Atmospheric Environment, 32: 4195–4206.CrossRefGoogle Scholar
  60. Watson R.T. et al., 1997, The regional impacts of climate change: an assessment of vulnerability. Special Report for the Intergovernmental Panel on Climate Change.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • ALEXANDER BAKLANOV
    • 1
  1. 1.Danish Meteorological Institute, DMICopenhagenDenmark

Personalised recommendations