Positron annihilation lifetime spectroscopy and atomistic modeling – effective tools for the disordered condensed systems characterization

  • Josef Bartoš
  • D. Račko
  • O. Šauša
  • J. Krištiak
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 242)


The complex structure-property relationships in the disordered systems under normal and exogenic conditions can be understood after characterizing the spatial arrangement of constituents. Here, an integral approach including the relevant experimental technique, phenomenological, and theoretical analyses as well as atomistic modeling is presented. Application of such a combined approach is demonstrated for the cases of glycerol and propylene glycol.


Free volume Positron annihilation free volume models atomistic modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandt, W. and Dupasquier, A. (eds.) (1983) Positron Solid State Physics, North- Holland, Amsterdam.Google Scholar
  2. 2.
    Jean, Y.C. (1995) Characterizing free volume and holes in polymers by positron annihilation spectroscopy in Dupasquer, A. (ed.) Positron Spectroscopy of Solids, IOS, Ohmsha, Amsterdam, p. 563.Google Scholar
  3. 3.
    Bartoš, J. (2000) Positron annihilation spectroscopy of polymers and rubbers in R.A. Meyers (eds.) Encyclopedia of Analytical Chemistry, Wiley & Sons, Chichester, p. 7968.Google Scholar
  4. 4.
    Jean, Y.C., Mallon, P.E., and Schrader, D.M. (eds.) (2003) Principles and Applica-tions of Positron & Positronium Chemistry, World Scientific Publ., Ne rsey. w JeGoogle Scholar
  5. 5.
    Bartoš, J., Šauša, O., and Krištiak, J. Annihilation response of the ortho-positronium probe from positron annihilation lifetime spectroscopy and its relationships to the free volume and dynamics of glass-forming systems in ARW NATO Series: Nonlinear Dielectric Phenomena in Complex Liquids, Kluwer, Acad. Publ., Dordrecht, The Netherlands, p. 289.Google Scholar
  6. 6.
    Bartoš, J., Šauša, O., Krištiak, J., Blochowicz, T., and Rössler, E. (2001) J. Phys.- Cond. Matter 13, 11473.CrossRefADSGoogle Scholar
  7. 7.
    Šauša, O., Bartoš, J., and Krištiak, J. to be published.Google Scholar
  8. 8.
    Bartoš, J., Šauša, O., Bandžuch, P., Zrubcová, J., and Krištiak, J. (2002) J. Non-Cryst. Solids 307 -310,417.Google Scholar
  9. 9.
    Kovacs, A. (1963) Adv. Polym. Sci. 3, 394.CrossRefGoogle Scholar
  10. 10.
    Parks, G.S. and Huffman, H.M. (1927) J. Phys. Chem. 11, 1842.CrossRefGoogle Scholar
  11. 11.
    Angell, C.A. (1985) Strong and fragile liquids in Ngai, K., Wright, G.S. (eds.) Relaxations in Complex Systems, NTIS, Springfield, p. 1.Google Scholar
  12. 12.
    Leon, C., Ngai, K., and Roland, C.M. (1999) J. Chem. Phys. 110, 11585.CrossRefADSGoogle Scholar
  13. 13.
    Pawlus, S., Bartoš, J., Šauša, O., Krištiak, J., and Paluch, M. (2005) J. Chem. Phys. 124, 104505.CrossRefADSGoogle Scholar
  14. 14.
    Lunkenheimer, P. and Loidl, A. (2002) Chem. Phys. 284, 205.CrossRefADSGoogle Scholar
  15. 15.
    Donth, E., The Glass Transition, Springer, Berlin, 2001.Google Scholar
  16. 16.
    Bartoš, J., Šauša, O., Raþko, D., Krištiak, J., and Fontanella, J.J. (2005) J. Non-Cryst. Solids 351, 2599.CrossRefADSGoogle Scholar
  17. 17.
    Stickel, F.J. (1995) Ph.D. Thesis, Shaker-Verlag, Aachen.Google Scholar
  18. 18.
    Schönhals, A. (2001) Europhys. Letts. 56, 815.CrossRefADSGoogle Scholar
  19. 19.
    Tao, J. (1972) J. Chem. Phys. 56, 5499; Eldrup, M., Lightbody, D., Sherwood, J.N. (1981) Chem. Phys. 63, 51; Nakanishi, H., Wang, S.J., and Jean, Y.C. (1988) in S.C. Sharma (eds.), Positron Annihilation Studies of Fluids, World Science, Singapore, p. 292.Google Scholar
  20. 20.
    Goworek, B. (1999)Acta Phys. Polonica A 95, 557; Olson, B.G., Prodpran, T., and Jamieson, A.M., Nazarenko, S. (2002) Polymer43, 6775.Google Scholar
  21. 21.
    Consolati, G. (2002) J. Chem. Phys. 117, 7279.CrossRefADSGoogle Scholar
  22. 22.
    Cohen, M.H. and Grest, G.S. (1979) Phys. Rev. B20,1077; Grest, G.S., and Cohen, M.H. (1980) Phys. Rev. B21, 4113; Grest, G.S. and Cohen,M.H. (1981) Adv. Chem. Phys. 48, 455.Google Scholar
  23. 23.
    Procacci, P., Darden, T.A., Paci, E., and Marchi, M. (1996) J. Phys. Chem. 100, 10464.CrossRefGoogle Scholar
  24. 24.
    Raþko, D., Chelli, R., Bartoš, J., Cardini, G. and Califano, S. (2005) Eur. Phys. J. E32, 289.ADSGoogle Scholar
  25. 25.
    Angell, C.A., and Wang, L.M. (2003) Biophys. Chem. 105, 621.CrossRefGoogle Scholar
  26. 26.
    Sastry, S., Truskett, T.M., Debenedetti, P.G., Torquato, S., and Stillin ger, F.H. (1998) Mol. Phys. 95, 289.CrossRefADSGoogle Scholar
  27. 27.
    McCullagh, C.M., Yu, Z., Jamiesson, A.M., Blackwell, J. and McGervey, J.D. (1995) Macromole cules 28, 6100; Yu, Z. (1995) Ph.D. thesis, Case Western Reserve University, Cleveland, OH.Google Scholar
  28. 28.
    Götze, W., and Sjörgen, L., (1992) Rep. Progr. Phys. 55, 241.CrossRefGoogle Scholar
  29. 29.
    Paluch, M., Casalini, R., and Roland, C.M. (2003) Phys. Rev. E67, 021508.ADSGoogle Scholar
  30. 30.
    Novikov, V.N., and Sokolov, A.P. (2003) Phys. Rev. E67, 031507.ADSGoogle Scholar
  31. 31.
    Adichtchev, S., Blochowicz, T., Tschirwitz, Ch., Novikov, V.N., and Rössler, E.A. (2003) Phys. Rev. E68, 011504.ADSGoogle Scholar
  32. 32.
    Götze, W. (1999) J. Phys.-Cond. Matt. 11, A1.CrossRefGoogle Scholar
  33. 33.
    Ngai, L.K. (1979) Comment Solid State Phys. 9, 127; Ngai, K.L., Rendell, R.W. (1997) in Fourkas, J.T., Kivelson, D., Mohanty, U., and Nelson, K. (eds.)Super- cooled Liquids. Advances and Novel Applications, ACS Symposium Series, Vol. 676 Amer. Chem. Soc. Washington, DC p. 45.Google Scholar
  34. 34.
    Casalini, R., Ngai, K.L., and Roland, C.M. (2003) Phys. Rev. B68, 014201.ADSGoogle Scholar
  35. 35.
    Ngai, K.L., and Paluch, M. (2004) J. Chem. Phys. 120, 857.CrossRefADSGoogle Scholar
  36. 36.
    Ngai, K.L. (2005) J. Non-Cryst. Solids 351, 2635.CrossRefADSGoogle Scholar
  37. 37.
    Ngai, K.L., Lunkenheimer, P., Leon, C., Scheneider, U., Brand, R., and Loidl, A. (2001) J. Chem. Phys. 115, 1405.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Josef Bartoš
    • 1
  • D. Račko
    • 2
  • O. Šauša
    • 3
  • J. Krištiak
    • 4
  1. 1.Slovak Academy of SciencesPolymer Institute of SASSlovakia
  2. 2.Slovak Academy of SciencesPolymer Institute of SASSlovakia
  3. 3.Institute of Physics of SASSlovakia
  4. 4.Institute of Physics of SASSlovakia

Personalised recommendations