Skip to main content

Amorphization of ice by collapse under pressure, vibrational properties, and ultraviscous water at 1 GPa

  • Conference paper
  • 804 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

When subjected to a uniaxial pressure of 0.7 to 1.5GPa, structures of hexagonal and cubic ices at a temperature below 140K collapse and the ordered arrangement of molecules is lost. Another well-known (tetrahedrally bonded and open structure) crystal, SiO, also collapses and become amorphous but at 25–30GPa and 300K. This is known as pressure-induced amorphization of crystals. Here we report, (i) how the vibrational properties, e.g., molar volume V, limiting high frequency permittivity ε , ultrasonic sound velocity, and thermal conductivity κ change during the pressure-amorphization, and (ii) how the amorphized ice relaxes to a lower energy state on heating to 140K, and becomes ultraviscous water of dielectric relaxation time of ~1κs at 1κGPa pressure. As the extent of amorphization increases on increasing the pressure to 1.5κGPa, V and κ irreversibly decrease and ε and the ultrasound velocity increase. Amorphization begins at a lower pressure for micron-size ice crystals than for larger crystals. It also begins at a lower pressure at high temperatures of ice. At a fixed pressure and temperature, ice continues to amorphize up to a period of several days according to a stretched exponential kinetics and a pressure– and temperature-dependent rate constant. It is proposed that lattice faults, which are also produced during pressure-deformation of ice cause a distribution of the Born instability pressures, and the amorphization process becomes pressure– and time-dependent. Pressure-induced amorphization of ice at 77K produces kinetically unstable high energy amorphs in the same manner as mechanical deformation of other crystals produces kinetically unstable, high energy amorphs which, on heating, become an ultraviscous liquid. But, in contrast, the ice amorphs are denser than the parent ices, and bulkier than ice VI the stable phase, and ice XII the metastable phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. kinner, B. J. and Fahey, J. J. (1963) J. Geophys. Res. 68, 5595.

    ADS  Google Scholar 

  2. chrader, R. and Dusdorf, W. (1966) Krist. Tech. 1, 59.

    Article  Google Scholar 

  3. rimak, W. (1975) The Compacted States of Vitreous Silica, Studies of Radiation Effects in Solids (Gordon and Breach, London 1975).

    Google Scholar 

  4. rixner, L. H. (1972) Mater. Res. Bull. 7, 879.

    Article  Google Scholar 

  5. armakov, A. Y., Yurchikov, Y., and Barinov, V. A. (1981) Phys. Met. Metall. (English Transl.) 52, 50.

    Google Scholar 

  6. och, C. C., Cavin, O. B., McKamey, C. J., and Scarborough, J. O. (1983) Appl. Phys. Lett. 43,1017.

    Article  ADS  Google Scholar 

  7. emley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C., and Manghnani, M. H. (1988) Nature 334, 52.

    Article  ADS  Google Scholar 

  8. iu, L.-G. and Ringwood, A. E. (1975) Earth Planet Sci. Lett. 28, 209.

    Article  ADS  Google Scholar 

  9. ruger, M. B. and Jeanloz, R. (1990) Science 249, 647.

    Article  ADS  Google Scholar 

  10. cNeil, L. E. and Grimsditch, M. (1992) Phys. Rev. Lett. 68, 83.

    Article  ADS  Google Scholar 

  11. eb, S. K., Wilding, M., Somayazulu, M., and McMillan, P. F. (2001) Nature 414, 528.

    Article  ADS  Google Scholar 

  12. reaves, G. N., Meneau, F., Sapelkin, A., Colyer, L. M., Gwynn, I. A. P., Wade, S., and Sankar, G. (2003) Nature Mater. 2, 622.

    Article  ADS  Google Scholar 

  13. hang, J., Zhao, Y., Xu, H., Zrelinskas, M. V., Wang, L., Wang, Y., and Uchida, T. (2005) Chem. Mater. 17, 2817.

    Article  Google Scholar 

  14. arlson, S. and Krogh Andersen, A. M. (2001) J. Appl. Cryst. 34, 7.

    Article  Google Scholar 

  15. erottoni, C. A. and da Jornada, J. A. H. (1998) Science 280, 886.

    Article  ADS  Google Scholar 

  16. ipinska-Kalita, K. E., Kruger, M. B., Carlson, S., and Krogh Andersen, A. M. (2003) Physica B 337, 221.

    Article  ADS  Google Scholar 

  17. oryainov, S. V. (2005), Eur. J. Minerology 17, 201.

    Article  Google Scholar 

  18. harma, S. M. and Sikka, S. K. (1996) Prog. Mater. Sci. 40, 1.

    Article  Google Scholar 

  19. reaves, G. N. (2001) NATO Advanced Research Workshop Frontiers of High Pressure Research III, Application of high pressure to low dimensional electronic materials, Colorado State University (Kluwer, Academic, 2001).

    Google Scholar 

  20. ishima, O., Calvert, L. D., and Whalley, E. (1984) Nature 310, 393.

    Article  ADS  Google Scholar 

  21. ohari, G. P. and Jones, S. J. (1986) Phil. Mag. B. 54, 311.

    Article  Google Scholar 

  22. ohari, G. P. and Andersson, O. (2004) J. Chem. Phys. 120, 6207.

    Article  ADS  Google Scholar 

  23. ohari, G. P., Hallbrucker, A., and Mayer, E. (1990) J. Phys. Chem. 94, 1212.

    Article  Google Scholar 

  24. ndersson, O. and Suga, H. (2002) Phys. Rev. B 65, 140201.

    Article  ADS  Google Scholar 

  25. ishima, O., Calvert, L. D., and Whalley, E. (1985) Nature 314, 76.

    Article  ADS  Google Scholar 

  26. ohari, G. P. (2000) Phys. Chem. Chem. Phys. 2, 1567.

    Article  Google Scholar 

  27. romnitskaya, E. L., Stal’gorova, O. V., and Brazhkin, V. V. (2001) Phys. Rev. B 64, 094205. Note that for some analysis in this paper and in a paper (Kohl, I., Mayer, E., and Hallbrucker, A. (2001) Phys. Chem. Chem. Phys. 3, 602) density of D2O ice XII has been mistaken for density of H2O ice XII. Use of the correct value would change some of their conclusions.

    Google Scholar 

  28. ebenedetti, P. G. (2003) J. Phys. Condens. Matter 15, R1669.

    Article  ADS  Google Scholar 

  29. ndersson, O. and Inaba A. (2005) Phys. Chem. Chem. Phys. 7, 1441.

    Article  Google Scholar 

  30. oerting, T., Salzmann, C., Kohl, I., Mayer, E., and Hallbrucker, A. (2001) Phys. Chem. Chem. Phys. 3, 5355.

    Article  Google Scholar 

  31. ehl, P. and Boutron, P. (1987) J. Phys. (Paris) Colloq. 48, C1-449.

    Article  ADS  Google Scholar 

  32. oirier, J. P. (1982) Nature 299, 683.

    Article  ADS  Google Scholar 

  33. ielens, A. G. G. M. (1987) and Allamandola, L. J. in Physical Processes in Interstellar Clouds, Eds. G. E. Morfill and M. Scholer (Reidel, Dordrecht, 1987), p. 223.

    Google Scholar 

  34. umma, M. J., Weissman, P. R., and Stern, S. A. (1993) in Protostars and Planets III, Eds. E. H. Levy, J. I. Lunine, and M. S. Matthews (Univ. of Arizona Press, Tucson, 1993), p. 1177.

    Google Scholar 

  35. enniskens, P. and Blake, D. F. (1994) Science 265, 753.

    Article  ADS  Google Scholar 

  36. enniskens, P., Blake, D. F., Wilson, M. A., and Pohorille, A. (1995) Astrophys. J. 455, 389.

    Article  ADS  Google Scholar 

  37. etrenko, V. F. and Whitworth, R. W. (1999) Physics of Ice (Oxford University Press, Oxford, 1999).

    Google Scholar 

  38. ohari, G. P. and Andersson, O. (2004) Phys. Rev. B 70, 184108.

    Article  ADS  Google Scholar 

  39. åkansson, B., Andersson, P., and Bäckström, G. (1988) Rev. Sci. Instrum. 59, 2269.

    Article  ADS  Google Scholar 

  40. ndersson, O., Sundqvist, B., and Bäckström, G. (1992) High Pressure Res. 10, 599.

    Article  ADS  Google Scholar 

  41. arslaw, H. S. and Jaeger, J. C. (1959) Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1959), p. 341.

    Google Scholar 

  42. ohari, G. P. and Whalley, E. (1976) J. Chem. Phys. 64, 4484.

    Article  ADS  Google Scholar 

  43. ohari, G. P. and Whalley, E., (2001) J. Chem. Phys. 115, 3274.

    Article  ADS  Google Scholar 

  44. ohari, G. P. and Whalley, E. (1979) J. Chem. Phys. 70, 2094.

    Article  ADS  Google Scholar 

  45. awada, S. (1988) J. Phys. Soc. Jpn 57, 3694.

    Article  ADS  Google Scholar 

  46. ohari, G. P. and Pyke, D. (2000) Phys. Chem. Chem. Phys. 2, 5479.

    Article  Google Scholar 

  47. oss, R. G. and Andersson, P. (1982) Can. J. Chem. 60, 881-892.

    Article  Google Scholar 

  48. osio, L., Johari, G. P., and Teixeira, J. (1986) Phys. Rev. Lett. 56, 460.

    Article  ADS  Google Scholar 

  49. ndersson, O. and Johari, G. P. (2004) J. Chem. Phys. 121, 3936.

    Article  ADS  Google Scholar 

  50. ndersson, O. and Inaba, A. (2005) J. Chem. Phys. 122, 124710.

    Article  ADS  Google Scholar 

  51. tal’gorova, O. V., Gromnitskaya, E. L., and Brazhkin, V. V. (1995) JETP Lett. 62, 356.

    ADS  Google Scholar 

  52. romnitskaya, E. L., Stal’gorova, O. V., and Brazhkin, V. V. (1997) JETP Lett. 85, 109.

    Google Scholar 

  53. tal’gorova, O. V., Gromnitskaya, E. L., Brazhkin, V. V., and Lyapin, A. G. (1999) JETP Lett. 69, 694.

    Article  ADS  Google Scholar 

  54. ishima, O. (1994) J. Chem. Phys. 100, 5910.

    Article  ADS  Google Scholar 

  55. ishima, O. (1996) Nature (London) 384, 546.

    Article  ADS  Google Scholar 

  56. ajumdar, C. K. (1971) Solid State Comm. 9, 1987.

    Google Scholar 

  57. endler, J. T. and Schlesinger, M. F. (1985) Macromolecules 18, 591.

    Article  ADS  Google Scholar 

  58. cherrer, G. W. (1986) Relaxations in Glasses and Composites (John Wiley, N.Y. 1986), 1986), Chapter 12.

    Google Scholar 

  59. chmidt-Rohr, K. and Spiess, H. W. (1991) Phys. Rev Lett. 66, 3020.

    Article  ADS  Google Scholar 

  60. chiener, B., Bohmer, R., Loidl, A., and Chamberlin, R. V. (1996) Science 274, 752.

    Article  ADS  Google Scholar 

  61. icerone, M., Blackburn, F. R., and Ediger, M. F. (1995) J. Chem. Phys. 102, 471.

    Article  ADS  Google Scholar 

  62. lonka, A. (2001) Dispersive Kinetics (Kluwer, Dordrecht, 2001).

    MATH  Google Scholar 

  63. emley, R. J., Chen, L. C., and Mao, H. K. (1989) Nature 338, 638.

    Article  ADS  Google Scholar 

  64. alzmann, C. G., Kohl, I., Loerting, T., Mayer, E., and Hallbrucker, A. (2003) Phys. Chem. Chem. Phys. 5, 3507.

    Article  Google Scholar 

  65. loriano, M. A., Handa, Y. P., Klug, D. D., and Whalley, E. (1989) J. Chem. Phys. 91, 7187.

    Article  ADS  Google Scholar 

  66. ohari, G. P., Pascheto, W., and Jones, S. J. (1994) J. Chem. Phys.100, 4548 and references therein.

    Google Scholar 

  67. obbs, P. V. (1074) Ice Physics (Clarendon, Oxford, 1974).

    Google Scholar 

  68. alvetti, G., Tombari, E., and Johari, G. P. (1995) J. Chem. Phys. 102, 49.87.

    Article  Google Scholar 

  69. orn, M. and Huang, K. (1954) Dynamic Theory of Crystal Lattices (Clarendon, Oxford, 1954).

    Google Scholar 

  70. se, J. S., Klug, D. D., Tulk, C. A., Swainson, I., Svensson, E. C., Loong, C. K., Shpakov, V., Belosludov, V. R., Belosludov, R. V., and Kawazoe, Y. (1999) Nature 400, 647.

    Article  ADS  Google Scholar 

  71. erez, J., Mai, C., and Vassoile, R. (1977) J. Glaciology 21, 361.

    ADS  Google Scholar 

  72. oulson, C. A. and Eisenberg, D. (1966) Proc. Roy. Soc. (London) A291, 454.

    ADS  Google Scholar 

  73. ohari, G. P. and Jones, S. J. (1985) Jour. de Chim. Phys. Phys.-Chim. Biol. (Fr.) 82, 1019.

    Google Scholar 

  74. ikka, S. K. (2004) J. Phys. Conden. Matter 16, S1033.

    Article  ADS  Google Scholar 

  75. ohari, G. P. (2004) J. Chem. Phys. 121, 8428.

    Article  ADS  Google Scholar 

  76. ulk, C. A., Benmore, C. J., Urquidi, J., Klug, D. D., Neuefeind, J., Tomberli, B., and Egelstaff, P. A. (2002) Science 297, 1320.

    Article  ADS  Google Scholar 

  77. oza, M. M., Schober, H., Fischer, H. E., Hansen, T., and Fujara, F. (2003) J. Phys. Condens. Matter 15, 321.

    Article  ADS  Google Scholar 

  78. uthrie, M., Urquidi, J., Tulk, C. A., Benmore, C. J., Klug, D. D., and Neuefeind, J. (2003) Phys. Rev. B 68, 184110.

    Article  ADS  Google Scholar 

  79. ndersson, O. (2005) Phys. Rev. Lett. 95, 205503.

    Article  ADS  Google Scholar 

  80. lotz, S., Hamel, G., Loveday, J. S., Nelmes, R. J., and Guthrie, M. (2003) Z. Kristallogr. 218, 117.

    Article  Google Scholar 

  81. ole, K. S. and Cole, R. H. (1941) J. Chem. Phys. 9, 341.

    Article  ADS  Google Scholar 

  82. asted, J. B. (1973) Aqueous Dielectrics (Chapman and Hall, London, 1973).

    Google Scholar 

  83. kada, K., Yao, M., Hiejima, Y., Kohno, H., and Kajihara, Y. (1999) J. Chem. Phys. 110, 3026.

    Article  ADS  Google Scholar 

  84. ohari, G. P. (2005) Phys. Chem. Chem. Phys. 7, 1091.

    Article  Google Scholar 

  85. ohari, G. P. (2005) J. Chem. Phys. 122, 144508.

    Article  ADS  Google Scholar 

  86. ohari, G. P. (2003) J. Phys. Chem. 107, 9063.

    Google Scholar 

  87. ohari, G. P., Hallbrucker, A., and Mayer, E. (1987) Nature 330, 552.

    Article  ADS  Google Scholar 

  88. ichards, T. G. and Johari, G. P. (1988) Phil. Mag. B 58, 445.

    Google Scholar 

  89. alzmann, C. G., Mayer, E., and Hallbrucker, A. (2004) Phys. Chem. Chem. Phys.6, 5156.

    Article  Google Scholar 

  90. oerting, T., Kohl, I., Salzmann, C., Mayer, E., and Hallbrucker, A. (2002) J. Chem. Phys. 116, 3171.

    Article  ADS  Google Scholar 

  91. oza, M. M., Schober, H., Geil, B., Lorenzen, M., and Requardt, H. (2004) Phys. Rev. B 69, 024204.

    Article  ADS  Google Scholar 

  92. trassle, T., Saitta, A. M., Klotz, S., and Braden, M. (2004) Phys. Rev. Lett. 93, 225901.

    Article  ADS  Google Scholar 

  93. ohari, G. P. and Whalley, E. (1981) J. Chem. Phys. 75, 1333.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Johari, G.P., Andersson, O. (2007). Amorphization of ice by collapse under pressure, vibrational properties, and ultraviscous water at 1 GPa. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_4

Download citation

Publish with us

Policies and ethics