Advertisement

Self-assembly of polypeptides. The effect of thermodynamic confinement

  • G. Floudas
  • P. Papadopoulos
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 242)

Abstract

Despite common belief the most well-known polypeptide secondary structure (??–helical) is of rather low persistence. We have investigated the effect of the thermodynamic confinement produced by the unlike segments of nanophase separated block copolymers on the persistence length of ??–helices. The thermodynamic field give rise to a partial annihilation of helical defects. This suggests that thermodynamic confinement can be employed as a means of secondary structure perfection in phase separated polypeptide block copolymers.

Keywords

Polypeptides block copolymers confinement ??–helices persistence length 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walton, A.G., Blackwell, J. (1973) Biopolymers, Academic Press, New York.Google Scholar
  2. 2.
    Block, H. (1983) Poly(benzyl-L-glutamate) and OtherGlutamic Acid Containing Polymers, Gordon and Breach Science Publisher, New York.Google Scholar
  3. 3.
    Klok, H.-A., Langenwalter, J.F., Lecommandoux, S. (2000) Macromolecules 30, 7819.CrossRefADSGoogle Scholar
  4. 4.
    Schlaad, H., Smarsly B., Losik, M. (2004) Macromolecules 37, 22210.CrossRefADSGoogle Scholar
  5. 5.
    Wong, M.S., Cha, J.N., Choi, K.-S., Deming, T.J., Stucky, C.D. (2002) Nano Lett. 2, 583.CrossRefADSGoogle Scholar
  6. 6.
    Aliferis, Th., Iatrou, H., Hadjichristidis, N. (2004) Biomacromolecules 5, 1653.CrossRefGoogle Scholar
  7. 7.
    Hadjichristidis, N., Pispas, S., Floudas, G. (2002) Block Copolymers: Synthetic Strategies, Physical Properties and Applications, J. Wiley & Sons Inc., New York.Google Scholar
  8. 8.
    Floudas, G., Papadopoulos, P., Klok, H.-A., Vandermeulen, G.W.M., Rodriguez- Hernandez, J. (2003) Macromolecules 36, 3673.CrossRefADSGoogle Scholar
  9. 9.
    Papadopoulos, P., Floudas, G., Schnell, I., Lieberwirth, I., Nguyen T.Q., Klok, H.-A. (2005) Biomacromolecules, 7, 618.CrossRefGoogle Scholar
  10. 10.
    Papadopoulos, P., Floudas, G., Schnell, I., Aliferis, T., Iatrou, H., Hadjichristidis, N. (2005) Biomacromolecules 6, 2352.CrossRefGoogle Scholar
  11. 11.
    Mayes, A.M., de la Cruz, M.O. (1989) J. Chem. Phys. 91, 7228.CrossRefADSGoogle Scholar
  12. 12.
    Hartmann, L., Kratzmüller, T., Braun, H.-G., Kremer, F. (2000) Macromol. Rapid Commun. 21, 814.CrossRefGoogle Scholar
  13. 13.
    Papadopoulos, P., Floudas, G., Klok, H.-A., Schnell, I., Pakula, T. (2004) Biomacromolecules 5, 8.CrossRefGoogle Scholar
  14. 14.
    Papadopoulos, P., Floudas, G., Schnell, I., Klok, H.-A., Aliferis, T., Iatrou, H., Hadjichristidis, N. (2005) J. Chem. Phys. 122, 224906.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G. Floudas
    • 1
  • P. Papadopoulos
    • 2
  1. 1.University of IoanninaDept. of Physics and Biomedical Research Institute BRI-FORTHGreece
  2. 2.Dept. of Physics and Biomedical Research Institute BRI-FORTHUniversity of IoanninaGreece

Personalised recommendations