Skip to main content

Properties of water near its critical point

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 242))

Abstract

The equation of state and dielectric properties of water near its critical point are studied within the picture that the local structure of a system is mainly formed by the dimers, which rotate almost freely. It is shown that the degree of association is about 0.9. The coordinates of the critical point are successfully reproduced. The value and the temperature dependence of the dielectric permittivity, constructed in the canonical framework are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulavin, L. A., Malomuzh, N. P., and Shakun, K. S. (2005) How substantial is the role of the H-bond network in water? Ukr. Phys. 50, 653-658.

    Google Scholar 

  2. Vargaftik, N. B. (1972) Handbook of Thermo-Physical Properties of Liquids and Gases, Moscow, Nauka.

    Google Scholar 

  3. Lokotosh, T. V., Malomuzh, N. P., and Zakharchenko, V. L. (2003) Anomalous density and dielectric permittivity effects on the structure of water, J. Struct. Chem. (Rus.) 44, 1101-1010.

    Google Scholar 

  4. Lisichkin, Y. V., Novikov, A. G., and Fomichev, N. K. (1989) Vibrational and configurational contributions to the heat capacity of water according to quasielastic scattering of cold neutrons, J. Phys. Chem. (Rus.) 63, 833-835.

    Google Scholar 

  5. Singwi, K. S. and Sjolander, A. (1960) Difusive motions in water and cold neutron scattering, Phys. Rev. 119, 863-871.

    Article  ADS  Google Scholar 

  6. Oskotsky, V. S. (1963) To the theory of quasi-elastic scattering of cold neutrons in liquid, Fiz. Solid State (SSSR) 5, 1082-1085.

    Google Scholar 

  7. Fisher, I. Z. (1971) Hydrodynamic asymptote of the velocity autocorrelation function of a molecule in classic liquid, ZhETP 61, 1647-1659.

    Google Scholar 

  8. Lokotosh, T. V. and Malomuzh, N. P. (2000) Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids, Physica A 286, 474-488.

    Article  ADS  Google Scholar 

  9. Bulavin, L. A., Malomuzh, N. P., and Pankratov, K. N. (2006) Character of thermal motion in water according to data of quasi-elastic incoherent neutron scattering, J. Struct. Chem. (Rus.) 47, 52-59.

    Google Scholar 

  10. Blanckenhagen, P. (1972) Intermolecular vibrations and difussion in water investigated by scattering of cold neutrons, Ber. Bunsenges. (Phys. Chem.) 76, 891-903.

    Google Scholar 

  11. Teixeira, J., Bellissent-Funel, M. C., Chen, S. H., and Dianoux, J. (1985) Experimental determination of the nature of difussive motions of water molecules at low temperatures, Phys. Rev. A 31, 1913-1917.

    Article  ADS  Google Scholar 

  12. Frenkel, J. (1955) Kinetic Theory of Liquids, NY, Dover Publ.

    Google Scholar 

  13. Odutola, J. A. and Dyke, T. R. (1980) Partially deuterated water dimers: Microwave spectra and structure, J. Chem. Phys. 72, 5062-5070.

    Article  ADS  Google Scholar 

  14. Guillot, B. (2002) A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. 101, 219-260.

    Article  Google Scholar 

  15. Landau, L. and Lifshitz, E. (1976) Statistical Physics, Vol. 5, Moscow, Nauka.

    Google Scholar 

  16. Kulinskii, V. and Malomuzh, N. (2003) Dipole fluid as a basic model for the equation of state of ionic liquids in the vicinity of their critical point, Phys. Rev. E 67, 011501.

    Article  ADS  Google Scholar 

  17. Yu, H. and van Gunsteren, W. F. (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice, J. Chem. Phys. 121, 9549-9564.

    Article  ADS  Google Scholar 

  18. Zacepina, G. A. (1974) Structure and Properties of Water, Moscow, Moscow University Publ.

    Google Scholar 

  19. Harrison, G. B. L., Shakes, T. R., Robinson, C. M., Lawrence, S. B., Heath, D. D., Dempster, R. P., Lightowlers, M. W., Rickard, M. D., Malenkov, G. G., Tytik, D. L., and Zheligovskaya, E. A. (1999) Structure and dynamic heterogeneity of computer simulated water: ordinary, supercooled, stretched and compressed, J. Mol. Struc. 82, 27-38.

    Google Scholar 

  20. Fernandez, D. P., Mulev, Y., Goodwin, A. R. H., and Sengers, J. M. H. L. (1995) A database for the static dielectric constant of water and steam, J. Chem. Phys. Data 24, 33-69.

    Article  ADS  Google Scholar 

  21. Fernandez, D. P., Goodwin, A. R. H., Lemmon, E. W., Sengers, J. M. H. L., and Williams, R. C. (1997) A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Huckel coefficients, J. Chem. Phys. Data 26, 1125-1166.

    Article  ADS  Google Scholar 

  22. Harris, F. E. and Alder, B. J. (1954) Statistical mechanical derivation of Onsager’s equation for dielectric polarization, J. Chem. Phys. 22, 1806-1808.

    Article  ADS  Google Scholar 

  23. Koulinskii, V. and Malomuzh, N. (1997) Canonical formalism for description of critical phenomena in systems isomorphic to simple liquids, Cond. Matt. Phys. (Ukraine) 9, 29-46.

    Google Scholar 

  24. Kulinskii, V. (2003) Nonperturbative construction of the Landau-Ginzburg Hamiltonian for the Ising-like systems, J. Mol. Liq. 105, 273-278.

    Article  Google Scholar 

  25. Oleinikova, A., Brovchenko, I., Geiger, A., and Guillot, B. (2002) Percolation of water in aqueous solutions and liquid-liquid immiscibility, J. Chem. Phys. 117, 3296-3304.

    Article  ADS  Google Scholar 

  26. Partay, L. and Jedlovszky, P. (2005) Line of percolation in supercitical water, J. Chem. Phys. 122, (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kulinskii, V., Malomuzh, N.P. (2007). Properties of water near its critical point. In: Rzoska, S.J., Mazur, V.A. (eds) Soft Matter under Exogenic Impacts. NATO Science Series II: Mathematics, Physics and Chemistry, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5872-1_19

Download citation

Publish with us

Policies and ethics