Advertisement

Properties of water near its critical point

  • V. Kulinskii
  • N. P. Malomuzh
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 242)

Abstract

The equation of state and dielectric properties of water near its critical point are studied within the picture that the local structure of a system is mainly formed by the dimers, which rotate almost freely. It is shown that the degree of association is about 0.9. The coordinates of the critical point are successfully reproduced. The value and the temperature dependence of the dielectric permittivity, constructed in the canonical framework are in good agreement with the experimental data.

Keywords

Critical point van der Waals equation of state chemical equilibrium dimers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulavin, L. A., Malomuzh, N. P., and Shakun, K. S. (2005) How substantial is the role of the H-bond network in water? Ukr. Phys. 50, 653-658.Google Scholar
  2. 2.
    Vargaftik, N. B. (1972) Handbook of Thermo-Physical Properties of Liquids and Gases, Moscow, Nauka.Google Scholar
  3. 3.
    Lokotosh, T. V., Malomuzh, N. P., and Zakharchenko, V. L. (2003) Anomalous density and dielectric permittivity effects on the structure of water, J. Struct. Chem. (Rus.) 44, 1101-1010.Google Scholar
  4. 4.
    Lisichkin, Y. V., Novikov, A. G., and Fomichev, N. K. (1989) Vibrational and configurational contributions to the heat capacity of water according to quasielastic scattering of cold neutrons, J. Phys. Chem. (Rus.) 63, 833-835.Google Scholar
  5. 5.
    Singwi, K. S. and Sjolander, A. (1960) Difusive motions in water and cold neutron scattering, Phys. Rev. 119, 863-871.CrossRefADSGoogle Scholar
  6. 6.
    Oskotsky, V. S. (1963) To the theory of quasi-elastic scattering of cold neutrons in liquid, Fiz. Solid State (SSSR) 5, 1082-1085.Google Scholar
  7. 7.
    Fisher, I. Z. (1971) Hydrodynamic asymptote of the velocity autocorrelation function of a molecule in classic liquid, ZhETP 61, 1647-1659.Google Scholar
  8. 8.
    Lokotosh, T. V. and Malomuzh, N. P. (2000) Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids, Physica A 286, 474-488.CrossRefADSGoogle Scholar
  9. 9.
    Bulavin, L. A., Malomuzh, N. P., and Pankratov, K. N. (2006) Character of thermal motion in water according to data of quasi-elastic incoherent neutron scattering, J. Struct. Chem. (Rus.) 47, 52-59.Google Scholar
  10. 10.
    Blanckenhagen, P. (1972) Intermolecular vibrations and difussion in water investigated by scattering of cold neutrons, Ber. Bunsenges. (Phys. Chem.) 76, 891-903.Google Scholar
  11. 11.
    Teixeira, J., Bellissent-Funel, M. C., Chen, S. H., and Dianoux, J. (1985) Experimental determination of the nature of difussive motions of water molecules at low temperatures, Phys. Rev. A 31, 1913-1917.CrossRefADSGoogle Scholar
  12. 12.
    Frenkel, J. (1955) Kinetic Theory of Liquids, NY, Dover Publ.Google Scholar
  13. 13.
    Odutola, J. A. and Dyke, T. R. (1980) Partially deuterated water dimers: Microwave spectra and structure, J. Chem. Phys. 72, 5062-5070.CrossRefADSGoogle Scholar
  14. 14.
    Guillot, B. (2002) A reappraisal of what we have learnt during three decades of computer simulations on water, J. Mol. Liq. 101, 219-260.CrossRefGoogle Scholar
  15. 15.
    Landau, L. and Lifshitz, E. (1976) Statistical Physics, Vol. 5, Moscow, Nauka.Google Scholar
  16. 16.
    Kulinskii, V. and Malomuzh, N. (2003) Dipole fluid as a basic model for the equation of state of ionic liquids in the vicinity of their critical point, Phys. Rev. E 67, 011501.CrossRefADSGoogle Scholar
  17. 17.
    Yu, H. and van Gunsteren, W. F. (2004) Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice, J. Chem. Phys. 121, 9549-9564.CrossRefADSGoogle Scholar
  18. 18.
    Zacepina, G. A. (1974) Structure and Properties of Water, Moscow, Moscow University Publ.Google Scholar
  19. 19.
    Harrison, G. B. L., Shakes, T. R., Robinson, C. M., Lawrence, S. B., Heath, D. D., Dempster, R. P., Lightowlers, M. W., Rickard, M. D., Malenkov, G. G., Tytik, D. L., and Zheligovskaya, E. A. (1999) Structure and dynamic heterogeneity of computer simulated water: ordinary, supercooled, stretched and compressed, J. Mol. Struc. 82, 27-38.Google Scholar
  20. 20.
    Fernandez, D. P., Mulev, Y., Goodwin, A. R. H., and Sengers, J. M. H. L. (1995) A database for the static dielectric constant of water and steam, J. Chem. Phys. Data 24, 33-69.ADSCrossRefGoogle Scholar
  21. 21.
    Fernandez, D. P., Goodwin, A. R. H., Lemmon, E. W., Sengers, J. M. H. L., and Williams, R. C. (1997) A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Huckel coefficients, J. Chem. Phys. Data 26, 1125-1166.ADSCrossRefGoogle Scholar
  22. 22.
    Harris, F. E. and Alder, B. J. (1954) Statistical mechanical derivation of Onsager’s equation for dielectric polarization, J. Chem. Phys. 22, 1806-1808.CrossRefADSGoogle Scholar
  23. 23.
    Koulinskii, V. and Malomuzh, N. (1997) Canonical formalism for description of critical phenomena in systems isomorphic to simple liquids, Cond. Matt. Phys. (Ukraine) 9, 29-46.Google Scholar
  24. 24.
    Kulinskii, V. (2003) Nonperturbative construction of the Landau-Ginzburg Hamiltonian for the Ising-like systems, J. Mol. Liq. 105, 273-278.CrossRefGoogle Scholar
  25. 25.
    Oleinikova, A., Brovchenko, I., Geiger, A., and Guillot, B. (2002) Percolation of water in aqueous solutions and liquid-liquid immiscibility, J. Chem. Phys. 117, 3296-3304.CrossRefADSGoogle Scholar
  26. 26.
    Partay, L. and Jedlovszky, P. (2005) Line of percolation in supercitical water, J. Chem. Phys. 122, (submitted).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • V. Kulinskii
    • 1
  • N. P. Malomuzh
    • 2
  1. 1.Department for Theoretical PhysicsOdessa National UniversityUkraine
  2. 2.Department for Theoretical PhysicsOdessa National UniversityUkraine

Personalised recommendations