Tight junctions and metastasis of breast cancer

  • Tracey A. Martin
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 11)


TJs are the apical most structure between epithelial and endothelial cells. Although well known as functioning as a control for paracellular diffusion of ions and certain molecules, it has recently become apparent that the TJ has a vital role in maintaining cell integrity and that loss of cohesion of the TJ structure can lead to invasion and thus metastasis of breast cancer cells.


TJ metastasis breast cancer occludin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol. 1999; 9(7):268-273.PubMedGoogle Scholar
  2. 2.
    Jiang WG, Martin TA, Matsumoto K, Nakamura T, Mansel RE. Hepatocyte growth factor/scatter factor decreases the expression of occludin and transendothelial resistance (TER) and increases paracellular permeability in human vascular endothelial cells. J Cell Physiol. 1999; 181(2):319-329.PubMedGoogle Scholar
  3. 3.
    Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commun. 1998; 244(2):414-420.PubMedGoogle Scholar
  4. 4.
    Wong V, Gumbiner BM. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol. 1997; 136(2):399-409.PubMedGoogle Scholar
  5. 5.
    Hollande F, Blanc EM, Bali JP, Whitehead RH, Pelegrin A, Baldwin GS, Choquet A. HGF regulates tight junctions in new nontumorigenic gastric epithelial cell line. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G910-921.PubMedGoogle Scholar
  6. 6.
    Martin TA, Mansel RE, Jiang WG. Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular per- meability of human vascular endothelial cells. J Cell Physiol. 2002; 192(3): 268-275.PubMedGoogle Scholar
  7. 7.
    Ren J, Hamada J, Takeichi N, Fujikawa S, Kobayashi H. Ultrastructural differences in junctional intercellular communication between highly and weakly metastatic clones derived from rat mammary carcinoma. Cancer Res. 1990; 50(2):358-362.PubMedGoogle Scholar
  8. 8.
    Satoh H, Zhong Y, Isomura H, Saitoh M, Enomoto K, Sawada N, Mori M. Localization of 7H6 tight junction-associated antigen along the cell border of vascular endothelial cells correlates with paracellular barrier function against ions, large molecules, and cancer cells. Exp Cell Res. 1996; 222(2):269-274.PubMedGoogle Scholar
  9. 9.
    Hoevel T, Macek R, Mundigl O, Swisshelm K, Kubbies M. Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J Cell Physiol. 2002; 191(1):60-68.PubMedGoogle Scholar
  10. 10.
    Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22(13):2021-2033.PubMedGoogle Scholar
  11. 11.
    Kramer F, White K, Kubbies M, Swisshelm K, Weber BH. Genomic organi- zation of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum Genet. 2000; 107(3):249-256.PubMedGoogle Scholar
  12. 12.
    Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol. 1998; 153(6):1767-1773.PubMedGoogle Scholar
  13. 13.
    Chlenski A, Ketels KV, Korovaitseva GI, Talamonti MS, Oyasu R, Scarpelli DG. Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim Biophys Acta. 2000; 1493(3):319-324.PubMedGoogle Scholar
  14. 14.
    Bell J, Walsh S, Nusrat A, Cohen C. Zonula occludens-1 and Her-2/neu expression in invasive breast carcinoma. Appl Immunohistochem Mol Morphol. 2003; 11(2):125-129.PubMedGoogle Scholar
  15. 15.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Hepatocyte growth factor disrupts tight junctions in human breast cancer cells. Cell Biol Int. 2004 28(5):361-371.PubMedGoogle Scholar
  16. 16.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer. 2004; 40(18):2717-2725.PubMedGoogle Scholar
  17. 17.
    Ikenouchi J, Matsuda M, Furuse M, Tsukita S. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci. 2003; 116(Pt 10):1959-1967.PubMedGoogle Scholar
  18. 18.
    Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005; 12(6):488-496.PubMedGoogle Scholar
  19. 19.
    Ohkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci. 2004; 117(Pt 9):1675-1685.PubMedGoogle Scholar
  20. 20.
    Gopalakrishnan S, Raman N, Atkinson SJ, Marrs JA. Rho GTPase signaling regulates tight junction assembly and protects tight junctions during ATP depletion. Am J Physiol. 1998; 275(3 Pt 1):C798-809.PubMedGoogle Scholar
  21. 21.
    Chen Y, Merzdorf C, Paul DL, Goodenough DA. COOH terminus of occludin is required for tight junction barrier function in early Xenopus embryos. J Cell Biol. 1997; 138(4):891-899.PubMedGoogle Scholar
  22. 22.
    Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998; 141(7):1539-1550.PubMedGoogle Scholar
  23. 23.
    Martin TA, Jiang WG. Tight junctions and their role in cancer metastasis. Histol Histopathol. 2001; 16(4):1183-1195.PubMedGoogle Scholar
  24. 24.
    Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol. 1999; 10(6):1337-1345.PubMedGoogle Scholar
  25. 25.
    Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986; 103(3):755-766.PubMedGoogle Scholar
  26. 26.
    Anderson JM, Stevenson BR, Jesaitis LA, Goodenough DA, Mooseker MS. Characterization of ZO-1, a protein component of the tight junction from mouse liver and Madin-Darby canine kidney cells. J Cell Biol. 1988; 106(4):1141-1149.PubMedGoogle Scholar
  27. 27.
    Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem. 1999; 274(9):5981-5986.PubMedGoogle Scholar
  28. 28.
    Balda MS, Matter K. The tight junction protein ZO-1 and an interacting trans- cription factor regulate ErbB-2 expression. EMBO J. 2000; 19(9):2024-2033.PubMedGoogle Scholar
  29. 29.
    Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ Jr. Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem. 2000; 275(39):30573-30585.PubMedGoogle Scholar
  30. 30.
    Traweger A, Fang D, Liu YC, Stelzhammer W, Krizbai IA, Fresser F, Bauer HC, Bauer H. The tight junction-specific protein occludin is a functional target of the E3 ubiquitin-protein ligase itch. J Biol Chem. 2002; 277(12):10201-10208.PubMedGoogle Scholar
  31. 31.
    Chlenski A, Ketels KV, Tsao MS, Talamonti MS, Anderson MR, Oyasu R, Scarpelli DG. Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma. Int J Cancer. 1999; 82(1):137-144.PubMedGoogle Scholar
  32. 32.
    Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem. 2002; 277(1):455-461.PubMedGoogle Scholar
  33. 33.
    Laura RP, Ross S, Koeppen H, Lasky LA. MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res. 2002; 275(2):155-170.PubMedGoogle Scholar
  34. 34.
    Fasano A. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann N Y Acad Sci. 2000; 915:214-222.PubMedGoogle Scholar
  35. 35.
    Wang WL, Lu RL, DiPierro M, Fasano A. Zonula occludin toxin, a microtubule binding protein. World J Gastroenterol. 2000; 6(3):330-334.PubMedGoogle Scholar
  36. 36.
    Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem. 2001; 276(22):19160-19165.PubMedGoogle Scholar
  37. 37.
    Mino A, Ohtsuka T, Inoue E, Takai Y. Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight junctions. Genes Cells. 2000; 5(12):1009-1016.PubMedGoogle Scholar
  38. 38.
    Dimitratos SD, Woods DF, Bryant PJ. Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev. 1997;63(1):127-130.PubMedGoogle Scholar
  39. 39.
    Ohno H, Hirabayashi S, Kansaku A, Yao I, Tajima M, Nishimura W, Ohnishi H, Mashima H, Fujita T, Omata M, Hata Y. Carom: a novel membrane-associated guanylate kinase-interacting protein with two SH3 domains. Oncogene 2003; 22(52):8422-8431.PubMedGoogle Scholar
  40. 40.
    Tabuchi K, Biederer T, Butz S, Sudhof TC. CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci. 2002; 22(11):4264-4273.PubMedGoogle Scholar
  41. 41.
    Biederer T, Sudhof TC. CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem. 2001; 276(51):47869-47876.PubMedGoogle Scholar
  42. 42.
    Hsueh YP, Wang TF, Yang FC, Sheng M. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature 2000; 404(6775):298-302.PubMedGoogle Scholar
  43. 43.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993; 123(6 Pt 2):1777-1788.PubMedGoogle Scholar
  44. 44.
    Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem. 1999; 274(9):5981-5986.PubMedGoogle Scholar
  45. 45.
    Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol. 1998; 274(1 Pt 2):F19.Google Scholar
  46. 46.
    Matter K, Balda MS. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J Cell Sci. 1998; 111 ( Pt 4):511-519.PubMedGoogle Scholar
  47. 47.
    Van Itallie CM, Anderson JM. Occludin confers adhesiveness when expressed in fibroblasts. J Cell Sci. 1997; 110 ( Pt 9):1113-1121.PubMedGoogle Scholar
  48. 48.
    Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S. Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol. 1997; 137(6):1393-1401.PubMedGoogle Scholar
  49. 49.
    Wong V. Phosphorylation of occludin correlates with occludin localization and function at the tight junction. Am J Physiol. 1997; 273(6 Pt 1):C1859-1867.PubMedGoogle Scholar
  50. 50.
    Farshori P, Kachar B. Redistribution and phosphorylation of occludin during opening and resealing of tight junctions in cultured epithelial cells. J Membr Biol. 1999; 170(2):147-156.PubMedGoogle Scholar
  51. 51.
    Wachtel M, Frei K, Ehler E, Fontana A, Winterhalter K, Gloor SM. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J Cell Sci. 1999; 112( Pt 23):4347-4356.PubMedGoogle Scholar
  52. 52.
    Smales C, Ellis M, Baumber R, Hussain N, Desmond H, Staddon JM. Occludin phosphorylation: identification of an occludin kinase in brain and cell extracts as CK2. FEBS Lett. 2003; 545(2-3):161-166.PubMedGoogle Scholar
  53. 53.
    Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commun. 1998; 244(2):414-420.PubMedGoogle Scholar
  54. 54.
    Muresan Z, Paul DL, Goodenough DA. Occludin 1B, a variant of the tight junction protein occludin. Mol Biol Cell. 2000; 11(2):627-634.PubMedGoogle Scholar
  55. 55.
    Ghassemifar MR, Sheth B, Papenbrock T, Leese HJ, Houghton FD, Fleming TP. Occludin TM4(-): an isoform of the tight junction protein present in primates lacking the fourth transmembrane domain. J Cell Sci. 2002; 115(Pt 15):3171-3180.PubMedGoogle Scholar
  56. 56.
    Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenoltypic alterations in epithelial cells. Am J Physiol Cell Physiol. 2005; 288(6): C1231-1241.PubMedGoogle Scholar
  57. 57.
    Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998; 141(7):1539-1550.PubMedGoogle Scholar
  58. 58.
    Tanaka M, Kamata R, Sakai R. EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem. 2005; 280(51): 42375-42382.PubMedGoogle Scholar
  59. 59.
    D’Souza T, Agarwal R, Morin PJ. Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem. 2005; 280(28):26233-26240.PubMedGoogle Scholar
  60. 60.
    Katoh M. Epithelial-mesenchymal transition in gastric cancer (Review). Int J Oncol. 2005; 27(6):1677-1683.PubMedGoogle Scholar
  61. 61.
    Kominsky SL. Claudins: emerging targets for cancer therapy. Expert Rev Mol Med. 2006; 8(18):1-11.PubMedGoogle Scholar
  62. 62.
    Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001; 104(1):165-172.PubMedGoogle Scholar
  63. 63.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285(5424):103-106.PubMedGoogle Scholar
  64. 64.
    Swisshelm K, Machl A, Planitzer S, Robertson R, Kubbies M, Hosier S. SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 1999; 226(2):285-295.PubMedGoogle Scholar
  65. 65.
    Itoh M, Bissell MJ. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003; 8(4):449-462.PubMedGoogle Scholar
  66. 66.
    Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998; 142(1):117-127.PubMedGoogle Scholar
  67. 67.
    Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev. 2005; 57(6):857-867.PubMedGoogle Scholar
  68. 68.
    Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annu Rev Cell Dev Biol. 2006; 22:207-235.PubMedGoogle Scholar
  69. 69.
    Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem. 2001; 276(4):2733-2741.PubMedGoogle Scholar
  70. 70.
    Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL. Identification and characterisation of human Junctional Adhesion Molecule (JAM). Mol Immunol. 1999; 36(17):1175-1188.PubMedGoogle Scholar
  71. 71.
    Kostrewa D, Brockhaus M, D’Arcy A, Dale GE, Nelboeck P, Schmid G, Bazzoni G, Dejana E, Bartfai T, Winkler FK, Hennig M. X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J. 2001; 20(16):4391-4398.PubMedGoogle Scholar
  72. 72.
    Mandell KJ, Babbin BA, Nusrat A, Parkos CA. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem. 2005; 280(12):11665-11674.PubMedGoogle Scholar
  73. 73.
    Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, Foster J, Klassen T, Dennis K, DeMarco RA, Pham T, Frantz G, Fong S. Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol. 2002; 168(4):1618-1626.PubMedGoogle Scholar
  74. 74.
    Chavakis T, Preissner KT, Santoso S. Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thromb Haemost. 2003;89(1):13-17.PubMedGoogle Scholar
  75. 75.
    Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000; 275(27):20520-20526.PubMedGoogle Scholar
  76. 76.
    Liu Y, Nusrat A, Schnell FJ, Reaves TA, Walsh S, Pochet M, Parkos CA. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci. 2000; 113( Pt 13):2363-2374.PubMedGoogle Scholar
  77. 77.
    Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci. 2004; 117(Pt 1):19-29.PubMedGoogle Scholar
  78. 78.
    Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem. 2000; 275(25):19139-19145.PubMedGoogle Scholar
  79. 79.
    Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 2001; 276(49):45826-45832.PubMedGoogle Scholar
  80. 80.
    Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP, Brock TA. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J Biol Chem. 2000; 275(44): 34750-34756.PubMedGoogle Scholar
  81. 81.
    Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol. 2001; 154(3):491-497.PubMedGoogle Scholar
  82. 82.
    Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem. 2000; Sep 8;275(36):27979-27988.Google Scholar
  83. 83.
    Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y. JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol. 2003; 23(12):4267-4282.PubMedGoogle Scholar
  84. 84.
    Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 2001; 98(26):15191-15196.PubMedGoogle Scholar
  85. 85.
    Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP, Wang Z, Hsieh JT. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res. 1999; 59(2): 325-330.PubMedGoogle Scholar
  86. 86.
    Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT. The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res. 2000; 60(18):5031-5036.PubMedGoogle Scholar
  87. 87.
    Rauen KA, Sudilovsky D, Le JL, Chew KL, Hann B, Weinberg V, Schmitt LD, McCormick F. Expression of the coxsackie adenovirus receptor in normal prostate and in primary and metastatic prostate carcinoma: potential relevance to gene therapy. Cancer Res. 2002; 62(13):3812-3818.PubMedGoogle Scholar
  88. 88.
    Rein DT, Breidenbach M, Curiel DT. Current developments in adenovirus- based cancer gene therapy. Future Oncol. 2006; 2(1):137-143.PubMedGoogle Scholar
  89. 89.
    Hemminki A, Zinn KR, Liu B, Chaudhuri TR, Desmond RA, Rogers BE, Barnes MN, Alvarez RD, Curiel DT. In vivo molecular chemotherapy and noninvasive imaging with an infectivity-enhanced adenovirus. J Natl Cancer Inst. 2002; 94(10):741-749PubMedGoogle Scholar
  90. 90.
    Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, Barnes MN, Alvarez RD, Siegal GP, Curiel DT, Hemminki A. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther. 2002;5(6):695-704.PubMedGoogle Scholar
  91. 91.
    Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, Raben D, Curiel DT. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res. 1998;58(24):5738-5748.PubMedGoogle Scholar
  92. 92.
    Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol. 2004; 78(10):5368-5381.PubMedGoogle Scholar
  93. 93.
    Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, Curiel DT. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adeno- virus receptor-independent cell entry mechanism. J Virol. 1998; 72(12):9706-9713.PubMedGoogle Scholar
  94. 94.
    Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P, Kropf DA, Carroll WR, Peters GE, Bucy RP, Curiel DT, Krasnykh V.Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res. 1999; 5(9):2571-2579.PubMedGoogle Scholar
  95. 95.
    Jee YS, Lee SG, Lee JC, Kim MJ, Lee JJ, Kim DY, Park SW, Sung MW, Heo DS. Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res. 2002; 22(5):2629-2634.PubMedGoogle Scholar
  96. 96.
    Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res. 2001; 61(17):6592-6600.PubMedGoogle Scholar
  97. 97.
    Sachs MD, Rauen KA, Ramamurthy M, Dodson JL, De Marzo AM, Putzi MJ, Schoenberg MP, Rodriguez R. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60(3):531-536.PubMedGoogle Scholar
  98. 98.
    Bruning A, Runnebaum IB. CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. Gene Ther. 2003; 10(3):198-205.PubMedGoogle Scholar
  99. 99.
    Li D, Mrsny RJ. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol. 2000; 148(4):791-800.PubMedGoogle Scholar
  100. 100.
    Anders M, Christian C, McMahon M, McCormick F, Korn WM. Inhibition of the Raf/MEK/ERK pathway up-regulates expression of the coxsackievirus and adenovirus receptor in cancer cells. Cancer Res. 2003; 63(9):2088-2095.PubMedGoogle Scholar
  101. 101.
    Yamada A, Irie K, Fukuhara A, Ooshio T, Takai Y. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells. Genes Cells 2004; 9(9):843-855.PubMedGoogle Scholar
  102. 102.
    Reymond N, Borg JP, Lecocq E, Adelaide J, Campadelli-Fiume G, Dubreuil P, Lopez M. Human nectin3/PRR3: a novel member of the PVR/PRR/nectin family that interacts with afadin. Gene 2000; 255(2):347-355.PubMedGoogle Scholar
  103. 103.
    Inagaki M, Irie K, Deguchi-Tawarada M, Ikeda W, Ohtsuka T, Takeuchi M, Takai Y. Nectin-dependent localization of ZO-1 at puncta adhaerentia junctions between the mossy fiber terminals and the dendrites of the pyramidal cells in the CA3 area of adult mouse hippocampus. J Comp Neurol. 2003; 460(4):514-524.PubMedGoogle Scholar
  104. 104.
    Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G, Lopez M. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C’-C”-D beta-strands of the nectin1 V domain. J Biol Chem. 2002; 277(30):27006-27013.PubMedGoogle Scholar
  105. 105.
    Yasumi M, Shimizu K, Honda T, Takeuchi M, Takai Y. Role of each immuno- globulin-like loop of nectin for its cell-cell adhesion activity. Biochem Biophys Res Commun. 2003; 302(1):61-66.PubMedGoogle Scholar
  106. 106.
    Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol. 2006; 248:261-298.PubMedGoogle Scholar
  107. 107.
    Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005; 65(21):9603-9606.PubMedGoogle Scholar
  108. 108.
    Kohler K, Zahraoui A. Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell. 2005; 97(8):659-665.PubMedGoogle Scholar
  109. 109.
    Van Itallie CM, Anderson JM. The molecular physiology of tight junction pores. Physiology (Bethesda). 2004; 19:331-338.Google Scholar
  110. 110.
    Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004; 286(6):C1213-1228.PubMedGoogle Scholar
  111. 111.
    Chlenski A, Ketels KV, Tsao MS, Talamonti MS, Anderson MR, Oyasu R, Scarpelli DG. Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma. Int J Cancer. 1999; 82(1):137-144.PubMedGoogle Scholar
  112. 112.
    Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT.Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci. 2005; 118(Pt 18):4283-4293.PubMedGoogle Scholar
  113. 113.
    Tobioka H, Sawada N, Zhong Y, Mori M. Enhanced paracellular barrier function of rat mesothelial cells partially protects against cancer cell penetration. Br J Cancer. 1996; 74(3):439-445.PubMedGoogle Scholar
  114. 114.
    Utoguchi N, Mizuguchi H, Dantakean A, Makimoto H, Wakai Y, Tsutsumi Y, Nakagawa S, Mayumi T. Effect of tumour cell-conditioned medium on endothelial macromolecular permeability and its correlation with collagen. Br J Cancer. 1996; 73(1):24-28.PubMedGoogle Scholar
  115. 115.
    Tokes AM, Kulka J, Paku S, Szik A, Paska C, Novak PK, Szilak L, Kiss A, Bogi K, Schaff Z. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res. 2005; 7(2):R296-305.PubMedGoogle Scholar
  116. 116.
    Soini Y. Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology 2005; 46(5):551-560.PubMedGoogle Scholar
  117. 117.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Reduction of levels of paracellin-1 and viculin aare associated with poor clincoal outcome in patients with breast cancer. Proceedings of American Association for Cancer Research, 2003; 44:511.Google Scholar
  118. 118.
    Martin TA, Jiang WG. Occludin is aberrantly expressed in human breast cancer. Breast Cancer Res Treat. 2005; 94(1):2096.Google Scholar
  119. 119.
    Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP. Differen- tiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat. 1994; 31(2-3):325-335.PubMedGoogle Scholar
  120. 120.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer. 2004; 40(18):2717-2725.PubMedGoogle Scholar
  121. 121.
    Buse P, Woo PL, Alexander DB, Reza A, Firestone GL. Glucocorticoid-induced functional polarity of growth factor responsiveness regulates tight junction dynamics in transformed mammary epithelial tumor cells. J Biol Chem. 1995; 270(47):28223-28227.PubMedGoogle Scholar
  122. 122.
    Guan Y, Woo PL, Rubenstein NM, Firestone GL. Transforming growth factor- alpha abrogates the glucocorticoid stimulation of tight junction formation and reverses the steroid-induced down-regulation of fascin in rat mammary epithelial tumor cells by a Ras-dependent pathway. Exp Cell Res. 2002; 273(1):1-11.PubMedGoogle Scholar
  123. 123.
    Mauro L, Bartucci M, Morelli C, Ando S, Surmacz E. IGF-I receptor-induced cell-cell adhesion of MCF-7 breast cancer cells requires the expression of junction protein ZO-1. J Biol Chem. 2001; 276(43):39892-39897.PubMedGoogle Scholar
  124. 124.
    Macek R, Swisshelm K, Kubbies M. Expression and function of tight junction associated molecules in human breast tumor cells is not affected by the RasMEK1 pathway. Cell Mol Biol (Noisy-le-grand). 2003; 49(1):1-11.Google Scholar
  125. 125.
    Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P, Sukumar S. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol. 2004; 164(5):1627-1633.PubMedGoogle Scholar
  126. 126.
    Ebihara C, Kondoh M, Hasuike N, Harada M, Mizuguchi H, Horiguchi Y, Fujii M, Watanabe Y. Preparation of a claudin-targeting molecule using a C-terminal fragment of Clostridium perfringens enterotoxin. J Pharmacol Exp Ther. 2006; 316(1):255-260.PubMedGoogle Scholar
  127. 127.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Hepatocyte growth factor disrupts tight junctions in human breast cancer cells. Cell Biol Int. 2004; 28(5):361-371.PubMedGoogle Scholar
  128. 128.
    Ye L, Martin TA, Parr C, Harrison GM, Mansel RE, Jiang WG. Biphasic effects of 17-beta-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells. J Cell Physiol. 2003; 196(2):362-369.PubMedGoogle Scholar
  129. 129.
    Rubenstein NM, Chan JF, Kim JY, Hansen SH, Firestone GL. Rnd3/RhoE induces tight junction formation in mammary epithelial tumor cells. Exp Cell Res. 2005; 305(1):74-82.PubMedGoogle Scholar
  130. 130.
    Azuma H, Ehata S, Miyazaki H, Watabe T, Maruyama O, Imamura T, Sakamoto T, Kiyama S, Kiyama Y, Ubai T, Inamoto T, Takahara S, Itoh Y, Otsuki Y, Katsuoka Y, Miyazono K, Horie S. Effect of Smad7 expression on metastasis of mouse mammary carcinoma JygMC(A) cells. J Natl Cancer Inst. 2005; 97(23):1734-1746.PubMedGoogle Scholar
  131. 131.
    Martinez-Estrada OM, Culleres A, Soriano FX, Peinado H, Bolos V, Martinez FO, Reina M, Cano A, Fabre M, Vilaro S. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J. 2006; 394(Pt 2):449-457.PubMedGoogle Scholar
  132. 132.
    Martin TA, Watkins G, Jiang WG. The Coxsackie-adenovirus receptor has elevated expression in human breast cancer. Clin Exp Med. 2005; 5(3):122-128.PubMedGoogle Scholar
  133. 133.
    Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol. 2005; 53(1):35-69.PubMedGoogle Scholar
  134. 134.
    Martin TA, Das T, Mansel RE, Jiang WG. Synergistic regulation of endothelial tight junctions by antioxidant (Se) and polyunsaturated lipid (GLA) via Claudin5 modulation. J Cell Biochem. 2006; 98(5):1308.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tracey A. Martin
    • 1
  1. 1.Metastasis and Angiogenesis Research GroupCardiff University School of MedicineHeath ParkUK

Personalised recommendations