The genetic control of breast cancer metastasis

  • Rajeev S. Samant
  • Oystein Fodstad
  • Lalita A. Shevde
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 11)


Metastasis of breast cancer is a complex event involving coordinated cross-talk of several proteins. Genes that control the resultant metastasis can be broadly classified as metastasis promoter genes (MPGs) and metastasis suppressor genes (MSGs). There is an explosion of information in the studies that focus on these genes; however, thus far, a very few of them are actually tested clinically and/or in vivo functionally. In this chapter we will focus on the metastasis controlling genes that have been tested for clinical relevance or functional properties in breast cancer metastasis models.


metastasis suppressing genes (MSGs) functional validation gene discovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tai P, Yu E, Vinh-Hung V, Cserni G, Vlastos G. Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries. BMC Cancer 2004, 4:60.PubMedCrossRefGoogle Scholar
  2. 2.
    Welch DR, Steeg PS, Rinker-Schaeffer CW. Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res 2000, 2(6):408-416.PubMedCrossRefGoogle Scholar
  3. 3.
    Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002, 2(8):563-572.PubMedCrossRefGoogle Scholar
  4. 4.
    Steeg PS, Ouatas T, Halverson D, Palmieri D, Salerno M. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 2003, 4(1):51-62.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003, 22(42):6524-6536.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoon DS, Kitago M, Kim J, Mori T, Piris A, Szyfelbein K, Mihm MC, Jr., Nathanson SD, Padera TP, Chambers AF et al. Molecular mechanisms of metastasis. Cancer Metastasis Rev 2006, 25(2):203-220.PubMedCrossRefGoogle Scholar
  7. 7.
    Berger JC, Vander Griend D, Stadler WM, Rinker-Schaeffer C. Metastasis suppressor genes: signal transduction, cross-talk and the potential for modulating the behavior of metastatic cells. Anticancer Drugs 2004, 15(6):559-568.PubMedCrossRefGoogle Scholar
  8. 8.
    Berger JC, Vander Griend DJ, Robinson VL, Hickson JA, Rinker-Schaeffer CW. Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol Ther 2005, 4(8):805-812.PubMedGoogle Scholar
  9. 9.
    Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immuno- suppressive networks during malignant progression. Cancer Res 2006, 66(11): 5527-5536.PubMedCrossRefGoogle Scholar
  10. 10.
    Gutierrez LS, Eliza M, Niven-Fairchild T, Naftolin F, Mor G. The Fas/Fas-ligand system: a mechanism for immune evasion in human breast carcinomas. Breast Cancer Res Treat 1999, 54(3):245-253.PubMedCrossRefGoogle Scholar
  11. 11.
    Mor G, Kohen F, Garcia-Velasco J, Nilsen J, Brown W, Song J, Naftolin F. Regulation of fas ligand expression in breast cancer cells by estrogen: functional differences between estradiol and tamoxifen. J Steroid Biochem Mol Biol 2000, 73(5):185-194.PubMedCrossRefGoogle Scholar
  12. 12.
    Bewick M, Conlon M, Parissenti AM, Lee H, Zhang L, Gluck S, Lafrenie RM. Soluble Fas (CD95) is a prognostic factor in patients with metastatic breast cancer undergoing high-dose chemotherapy and autologous stem cell transplantation. J Hematother Stem Cell Res 2001, 10(6):759-768.PubMedCrossRefGoogle Scholar
  13. 13.
    Ueno T, Toi M, Tominaga T. Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res 1999, 5(11):3529-3533.PubMedGoogle Scholar
  14. 14.
    Behrens J. The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Treat 1993, 24(3):175-184.PubMedCrossRefGoogle Scholar
  15. 15.
    Gandhari M, Arens N, Majety M, Dorn-Beineke A, Hildenbrand R. Urokinase-type plasminogen activator induces proliferation in breast cancer cells. Int J Oncol 2006, 28(6):1463-1470.PubMedGoogle Scholar
  16. 16.
    Arens N, Gandhari M, Bleyl U, Hildenbrand R. In vitro suppression of urokinase plasminogen activator in breast cancer cells-a comparison of two antisense strategies. Int J Oncol 2005, 26(1):113-119.PubMedGoogle Scholar
  17. 17.
    Yamashita J, Akizuki M, Jotsuka T, Harao M, Nakano S. Neutrophil elastase predicts trastuzumab responsiveness in metastatic breast cancer. Breast J 2006, 12(3):288.PubMedCrossRefGoogle Scholar
  18. 18.
    Yui S, Tomita K, Kudo T, Ando S, Yamazaki M. Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Sci 2005, 96(9):560-570.PubMedCrossRefGoogle Scholar
  19. 19.
    Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M. Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. Br J Cancer 2003, 88(7):1084-1090.PubMedCrossRefGoogle Scholar
  20. 20.
    Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M. The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res 2003, 63(2):337-341.PubMedGoogle Scholar
  21. 21.
    Yamashita J, Ogawa M, Shirakusa T. Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. J Leukoc Biol 1995, 57(3):375-378.PubMedGoogle Scholar
  22. 22.
    Pei D, Majmudar G, Weiss SJ. Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 1994, 269(41): 25849-25855.PubMedGoogle Scholar
  23. 23.
    Finlay TH, Tamir S, Kadner SS, Cruz MR, Yavelow J, Levitz M. alpha 1-Antitrypsin- and anchorage-independent growth of MCF-7 breast cancer cells. Endocrinology 1993, 133(3):996-1002.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomssen C, Schmitt M, Goretzki L, Oppelt P, Pache L, Dettmar P, Janicke F, Graeff H. Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin Cancer Res 1995, 1(7):741-746.PubMedGoogle Scholar
  25. 25.
    Schmitt M, Wilhelm O, Janicke F, Magdolen V, Reuning U, Ohi H, Moniwa N, Kobayashi H, Weidle U, Graeff H. Urokinase-type plasminogen activator (uPA) and its receptor (CD87): a new target in tumor invasion and metastasis. J Obstet Gynaecol 1995, 21(2):151-165.Google Scholar
  26. 26.
    Rozhin J, Sameni M, Ziegler G, Sloane BF. Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 1994, 54(24): 6517-6525.PubMedGoogle Scholar
  27. 27.
    Schmitt M, Janicke F, Moniwa N, Chucholowski N, Pache L, Graeff H. Tumor-associated urokinase-type plasminogen activator: biological and clinical significance. Biol Chem Hoppe Seyler 1992, 373(7):611-622.PubMedGoogle Scholar
  28. 28.
    Duffy MJ, McCarthy K. Matrix metalloproteinases in cancer: prognostic markers and targets for therapy (review). Int J Oncol 1998, 12(6):1343-1348.PubMedGoogle Scholar
  29. 29.
    Duffy MJ, Maguire TM, Hill A, McDermott E, O’Higgins N. Metallo-proteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2000, 2(4):252-257.PubMedCrossRefGoogle Scholar
  30. 30.
    Talvensaari-Mattila A, Paakko P, Hoyhtya M, Blanco-Sequeiros G, Turpeenniemi-Hujanen T. Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 1998, 83(6):1153-1162.PubMedCrossRefGoogle Scholar
  31. 31.
    Eccles SA, Box GM, Court WJ, Bone EA, Thomas W, Brown PD. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res 1996, 56(12):2815-2822.PubMedGoogle Scholar
  32. 32.
    Lochter A, Srebrow A, Sympson CJ, Terracio N, Werb Z, Bissell MJ. Misregulation of stromelysin-1 expression in mouse mammary tumor cells accompanies acquisition of stromelysin-1-dependent invasive properties. J Biol Chem 1997, 272(8):5007-5015.PubMedGoogle Scholar
  33. 33.
    Davies B, Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR. Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 1993, 67(5):1126-1131.PubMedGoogle Scholar
  34. 34.
    Yang SY, Lee J, Park CG, Kim S, Hong S, Chung HC, Min SK, Han JW, Lee HW, Lee HY. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin Exp Metastasis 2002, 19(7):603-608.PubMedCrossRefGoogle Scholar
  35. 35.
    Sheen-Chen SM, Liu YW, Eng HL, Chou FF. Serum levels of hepatocyte growth factor in patients with breast cancer. Cancer Epidemiol Biomarkers Prev 2005, 14(3):715-717.PubMedCrossRefGoogle Scholar
  36. 36.
    Taniguchi T, Toi M, Inada K, Imazawa T, Yamamoto Y, Tominaga T. Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin Cancer Res 1995, 1(9):1031-1034.PubMedGoogle Scholar
  37. 37.
    Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T, Shin S. Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 1994, 54(7):1630-1633.PubMedGoogle Scholar
  38. 38.
    Lamszus K, Jin L, Fuchs A, Shi E, Chowdhury S, Yao Y, Polverini PJ, Laterra J, Goldberg ID, Rosen EM. Scatter factor stimulates tumor growth and tumor angiogenesis in human breast cancers in the mammary fat pads of nude mice. Lab Invest 1997, 76(3):339-353.PubMedGoogle Scholar
  39. 39.
    Meiners S, Brinkmann V, Naundorf H, Birchmeier W. Role of morphogenetic factors in metastasis of mammary carcinoma cells. Oncogene 1998, 16(1): 9-20.PubMedCrossRefGoogle Scholar
  40. 40.
    Matteucci E, Locati M, Desiderio MA. Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res 2005, 310(1):176-185.PubMedCrossRefGoogle Scholar
  41. 41.
    Mine S, Fujisaki T, Kawahara C, Tabata T, Iida T, Yasuda M, Yoneda T, Tanaka Y. Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Exp Cell Res 2003, 288(1):189-197.PubMedCrossRefGoogle Scholar
  42. 42.
    Martin TA, Watkins G, Mansel RE, Jiang WG. Hepatocyte growth factor disrupts tight junctions in human breast cancer cells. Cell Biol Int 2004, 28(5):361-371.PubMedCrossRefGoogle Scholar
  43. 43.
    Parr C, Jiang WG. Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 2006, 119(5):1176-1183.PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang WG, Grimshaw D, Lane J, Martin TA, Abounader R, Laterra J, Mansel RE. A hammerhead ribozyme suppresses expression of hepatocyte growth factor/scatter factor receptor c-MET and reduces migration and invasiveness of breast cancer cells. Clin Cancer Res 2001, 7(8):2555-2562.PubMedGoogle Scholar
  45. 45.
    Martin TA, Parr C, Davies G, Watkins G, Lane J, Matsumoto K, Nakamura T, Mansel RE, Jiang WG. Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis 2003, 24(8):1317-1323.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin TA, Mansel RE, Jiang WG. Antagonistic effect of NK4 on HGF/SF induced changes in the transendothelial resistance (TER) and paracellular permeability of human vascular endothelial cells. J Cell Physiol 2002, 192(3):268-275.PubMedCrossRefGoogle Scholar
  47. 47.
    Hiscox S, Parr C, Nakamura T, Matsumoto K, Mansel RE, Jiang WG. Inhibition of HGF/SF-induced breast cancer cell motility and invasion by the HGF/SF variant, NK4. Breast Cancer Res Treat 2000, 59(3):245-254.CrossRefGoogle Scholar
  48. 48.
    Parr C, Watkins G, Mansel RE, Jiang WG. The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 2004, 10(1 Pt 1): 202-211.PubMedCrossRefGoogle Scholar
  49. 49.
    Graham JD, Balleine RL, Milliken JS, Bilous AM, Clarke CL. Expression of osteonectin mRNA in human breast tumours is inversely correlated with oestrogen receptor content. Eur J Cancer 1997, 33(10):1654-1660.PubMedCrossRefGoogle Scholar
  50. 50.
    Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, Thompson EW. SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res 1998, 58(23):5529-5536.PubMedGoogle Scholar
  51. 51.
    Briggs J, Chamboredon S, Castellazzi M, Kerry JA, Bos TJ. Transcriptional upregulation of SPARC, in response to c-Jun overexpression, contributes to increased motility and invasion of MCF7 breast cancer cells. Oncogene 2002, 21(46):7077-7091.PubMedCrossRefGoogle Scholar
  52. 52.
    Campo McKnight DA, Sosnoski DM, Koblinski JE, Gay CV. Roles of osteonectin in the migration of breast cancer cells into bone. J Cell Biochem 2006, 97(2):288-302.PubMedCrossRefGoogle Scholar
  53. 53.
    Jacob K, Webber M, Benayahu D, Kleinman HK. Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 1999, 59(17):4453-4457.PubMedGoogle Scholar
  54. 54.
    Dhanesuan N, Sharp JA, Blick T, Price JT, Thompson EW. Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Res Treat 2002, 75(1):73-85.PubMedCrossRefGoogle Scholar
  55. 55.
    Watkins G, Douglas-Jones A, Bryce R, Mansel RE, Jiang WG. Increased levels of SPARC (osteonectin) in human breast cancer tissues and its association with clinical outcomes. Prostaglandins Leukot Essent Fatty Acids 2005, 72(4): 267-272.PubMedCrossRefGoogle Scholar
  56. 56.
    Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 2006, 238(1):30-41.PubMedCrossRefGoogle Scholar
  57. 57.
    Zlotnik A. Chemokines and cancer. Int J Cancer 2006, 119(9):2026-2029.PubMedCrossRefGoogle Scholar
  58. 58.
    Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004, 2(6):327-338.PubMedGoogle Scholar
  59. 59.
    Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005, 65(3):967-971.PubMedGoogle Scholar
  60. 60.
    Zlotnik A. Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 2006, 13:191-199.PubMedCrossRefGoogle Scholar
  61. 61.
    Andre F, Cabioglu N, Assi H, Sabourin JC, Delaloge S, Sahin A, Broglio K, Spano JP, Combadiere C, Bucana C et al. Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 2006, 17(6):945-951.PubMedCrossRefGoogle Scholar
  62. 62.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410(6824):50-56.PubMedCrossRefGoogle Scholar
  63. 63.
    Su YC, Wu MT, Huang CJ, Hou MF, Yang SF, Chai CY. Expression of CXCR4 is associated with axillary lymph node status in patients with early breast cancer. Breast 2006, 15(4):533-539.PubMedCrossRefGoogle Scholar
  64. 64.
    Kang H, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 2005, 14(5):360-367.PubMedCrossRefGoogle Scholar
  65. 65.
    Rudland PS, Platt-Higgins A, Renshaw C, West CR, Winstanley JH, Robertson L, Barraclough R. Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 2000, 60(6):1595-1603.PubMedGoogle Scholar
  66. 66.
    Platt-Higgins AM, Renshaw CA, West CR, Winstanley JH, De Silva Rudland S, Barraclough R, Rudland PS. Comparison of the metastasis-inducing protein S100A4 (p9ka) with other prognostic markers in human breast cancer. Int J Cancer 2000, 89(2):198-208.PubMedCrossRefGoogle Scholar
  67. 67.
    Grigorian MS, Ambartsumian NS, Georgiev GP, Lukanidin EM. (Expression of mts1 gene in human breast cancer MCF-7 cells increases their malignancy). Mol Biol (Mosk) 1999, 33(4):651-656.Google Scholar
  68. 68.
    Zhang S, Wang G, Liu D, Bao Z, Fernig DG, Rudland PS, Barraclough R. The C-terminal region of S100A4 is important for its metastasis-inducing properties. Oncogene 2005, 24(27):4401-4411.PubMedCrossRefGoogle Scholar
  69. 69.
    Jenkinson SR, Barraclough R, West CR, Rudland PS. S100A4 regulates cell motility and invasion in an in vitro model for breast cancer metastasis. Br J Cancer 2004, 90(1):253-262.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee WY, Su WC, Lin PW, Guo HR, Chang TW, Chen HH. Expression of S100A4 and Met: potential predictors for metastasis and survival in early-stage breast cancer. Oncology 2004, 66(6):429-438.PubMedCrossRefGoogle Scholar
  71. 71.
    de Silva Rudland S, Martin L, Roshanlall C, Winstanley J, Leinster S, Platt-Higgins A, Carroll J, West C, Barraclough R, Rudland P. Association of S100A4 and osteopontin with specific prognostic factors and survival of patients with minimally invasive breast cancer. Clin Cancer Res 2006, 12(4):1192-1200.PubMedCrossRefGoogle Scholar
  72. 72.
    Tuck AB, O’Malley FP, Singhal H, Harris JF, Tonkin KS, Kerkvliet N, Saad Z, Doig GS, Chambers AF. Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 1998, 79(5):502-508.PubMedCrossRefGoogle Scholar
  73. 73.
    Tuck AB, Chambers AF. The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 2001, 6(4):419-429.PubMedCrossRefGoogle Scholar
  74. 74.
    Bramwell VH, Doig GS, Tuck AB, Wilson SM, Tonkin KS, Tomiak A, Perera F, Vandenberg TA, Chambers AF. Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clin Cancer Res 2006, 12(11 Pt 1): 3337-3343.PubMedCrossRefGoogle Scholar
  75. 75.
    Singhal H, Bautista DS, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF, Harris JF. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 1997, 3(4):605-611.PubMedGoogle Scholar
  76. 76.
    Tuck AB, Hota C, Wilson SM, Chambers AF. Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 2003, 22(8):1198-1205.PubMedCrossRefGoogle Scholar
  77. 77.
    Tuck AB, Elliott BE, Hota C, Tremblay E, Chambers AF. Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem 2000, 78(3):465-475.PubMedCrossRefGoogle Scholar
  78. 78.
    Cook AC, Tuck AB, McCarthy S, Turner JG, Irby RB, Bloom GC, Yeatman TJ, Chambers AF. Osteopontin induces multiple changes in gene expression that reflect the six “hallmarks of cancer” in a model of breast cancer progression. Mol Carcinog 2005, 43(4):225-236.PubMedCrossRefGoogle Scholar
  79. 79.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003, 3(6):537-549.PubMedCrossRefGoogle Scholar
  80. 80.
    He B, Mirza M, Weber GF. An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene 2006, 25(15):2192-2202.PubMedCrossRefGoogle Scholar
  81. 81.
    Kumar R, Wang RA, Bagheri-Yarmand R. Emerging roles of MTA family members in human cancers. Semin Oncol 2003, 30(5 Suppl 16):30-37.PubMedCrossRefGoogle Scholar
  82. 82.
    Nicolson GL, Moustafa AS. Metastasis-Associated genes and metastatic tumor progression. In Vivo 1998, 12(6):579-588.PubMedGoogle Scholar
  83. 83.
    Nicolson GL. Breast cancer metastasis-associated genes: role in tumour progression to the metastatic state. Biochem Soc Symp 1998, 63:231-243.PubMedGoogle Scholar
  84. 84.
    Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 2003, 20(1):19-24.PubMedCrossRefGoogle Scholar
  85. 85.
    Toh Y, Pencil SD, Nicolson GL. Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene 1995, 159(1): 97-104.PubMedCrossRefGoogle Scholar
  86. 86.
    Toh Y, Pencil SD, Nicolson GL. A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem 1994, 269(37):22958-22963.PubMedGoogle Scholar
  87. 87.
    Zhang H, Stephens LC, Kumar R. Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clin Cancer Res 2006, 12(5):1479-1486.PubMedCrossRefGoogle Scholar
  88. 88.
    Cui Y, Niu A, Pestell R, Kumar R, Curran EM, Liu Y, Fuqua SA. Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol 2006, 20(9):2020-2035.PubMedCrossRefGoogle Scholar
  89. 89.
    Kumar R. Another tie that binds the MTA family to breast cancer. Cell 2003, 113(2):142-143.PubMedCrossRefGoogle Scholar
  90. 90.
    Ree AH, Pacheco MM, Tvermyr M, Fodstad O, Brentani MM. Expression of a novel factor, com1, in early tumor progression of breast cancer. Clin Cancer Res 2000, 6(5):1778-1783.PubMedGoogle Scholar
  91. 91.
    Ree AH, Tvermyr M, Engebraaten O, Rooman M, Rosok O, Hovig E, Meza-Zepeda LA, Bruland OS, Fodstad O. Expression of a novel factor in human breast cancer cells with metastatic potential. Cancer Res 1999, 59(18): 4675-4680.PubMedGoogle Scholar
  92. 92.
    Jiang WG, Watkins G, Douglas-Jones A, Mokbel K, Mansel RE, Fodstad O. Expression of Com-1/P8 in human breast cancer and its relevance to clinical outcome and ER status. Int J Cancer 2005, 117(5):730-737.PubMedCrossRefGoogle Scholar
  93. 93.
    Jiang WG, Davies G, Fodstad O. Com-1/P8 in oestrogen regulated growth of breast cancer cells, the ER-beta connection. Biochem Biophys Res Commun 2005, 330(1):253-262.PubMedCrossRefGoogle Scholar
  94. 94.
    Bratland A, Risberg K, Maelandsmo GM, Gutzkow KB, Olsen OE, Moghaddam A, Wang MY, Hansen CM, Blomhoff HK, Berg JP et al. Expression of a novel factor, com1, is regulated by 1,25-dihydroxyvitamin D3 in breast cancer cells. Cancer Res 2000, 60(19):5578-5583.PubMedGoogle Scholar
  95. 95.
    Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 1988, 80(3):200-204.PubMedCrossRefGoogle Scholar
  96. 96.
    Steeg PS, Bevilacqua G, Pozzatti R, Liotta LA, Sobel ME. Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res 1988, 48(22):6550-6554.PubMedGoogle Scholar
  97. 97.
    Shevde LA, Welch DR. Metastasis suppressor pathways-an evolving paradigm. Cancer Lett 2003, 198(1):1-20.PubMedCrossRefGoogle Scholar
  98. 98.
    Mundy G. Preclinical models of bone metastases. Semin Oncol 2001, 28 (4 Suppl 11):2-8.PubMedCrossRefGoogle Scholar
  99. 99.
    Price JE, Zhang RD. Studies of human breast cancer metastasis using nude mice. Cancer Metastasis Rev 1990, 8(4):285-297.PubMedGoogle Scholar
  100. 100.
    Seraj MJ, Samant RS, Verderame MF, Welch DR. Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res 2000, 60(11):2764-2769.PubMedGoogle Scholar
  101. 101.
    Samant RS, Seraj MJ, Saunders MM, Sakamaki TS, Shevde LA, Harms JF, Leonard TO, Goldberg SF, Budgeon L, Meehan WJ et al. Analysis of mecha-nisms underlying BRMS1 suppression of metastasis. Clin Exp Metastasis 2000, 18(8):683-693.PubMedCrossRefGoogle Scholar
  102. 102.
    Samant RS, Debies MT, Shevde LA, Verderame MF, Welch DR. Identification and characterization of the murine ortholog (brms1) of breast-cancer metastasis suppressor 1 (BRMS1). Int J Cancer 2002, 97(1):15-20.PubMedCrossRefGoogle Scholar
  103. 103.
    Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, Eckert KA, Verderame MF, Welch DR. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 2004, 279(2):1562-1569.PubMedGoogle Scholar
  104. 104.
    Cicek M, Fukuyama R, Welch DR, Sizemore N, Casey G. Breast cancer metastasis suppressor 1 inhibits gene expression by targeting nuclear factorkappaB activity. Cancer Res 2005, 65(9):3586-3595.PubMedCrossRefGoogle Scholar
  105. 105.
    DeWald DB, Torabinejad J, Samant RS, Johnston D, Erin N, Shope JC, Xie Y, Welch DR. Metastasis suppression by breast cancer metastasis suppressor 1 involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. Cancer Res 2005, 65(3):713-717.PubMedGoogle Scholar
  106. 106.
    Mitchell DC, Abdelrahim M, Weng J, Stafford LJ, Safe S, Bar-Eli M, Liu M. Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2alpha and specificity protein-1. J Biol Chem 2006, 281(1):51-58.PubMedGoogle Scholar
  107. 107.
    Lee JH, Welch DR. Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene, KiSS-1. Cancer Res 1997, 57(12):2384-2387.PubMedGoogle Scholar
  108. 108.
    Dittmer A, Vetter M, Schunke D, Span PN, Sweep F, Thomssen C, Dittmer J. Parathyroid hormone-related protein regulates tumor-relevant genes in breast cancer cells. J Biol Chem 2006, 281(21):14563-14572.PubMedCrossRefGoogle Scholar
  109. 109.
    Stark AM, Tongers K, Maass N, Mehdorn HM, Held-Feindt J. Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 2005, 131(3):191-198.PubMedCrossRefGoogle Scholar
  110. 110.
    Martin TA, Watkins G, Jiang WG. KiSS-1 expression in human breast cancer. Clin Exp Metastasis 2005, 22(6):503-511.PubMedCrossRefGoogle Scholar
  111. 111.
    Arnaud-Dabernat S, Bourbon PM, Dierich A, Le Meur M, Daniel JY. Knockout mice as model systems for studying nm23/NDP kinase gene functions. Application to the nm23-M1 gene. J Bioenerg Biomembr 2003, 35(1):19-30.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang X, Wei L, Tang C, Slack R, Montgomery E, Lippman M. KAI1 protein is down-regulated during the progression of human breast cancer. Clin Cancer Res 2000, 6(9):3424-3429.PubMedGoogle Scholar
  113. 113.
    Su GH, Hilgers W, Shekher MC, Tang DJ, Yeo CJ, Hruban RH, Kern SE. Alterations in pancreatic, biliary, and breast carcinomas support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res 1998, 58(11): 2339-2342.PubMedGoogle Scholar
  114. 114.
    Ichikawa T, Hosoki S, Suzuki H, Akakura K, Igarashi T, Furuya Y, Oshimura M, Rinker-Schaeffer CW, Nihei N, Barrett JC et al. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer. Asian J Androl 2000, 2(3):167-171.PubMedGoogle Scholar
  115. 115.
    Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A, Karrison T, Huo D, Rutgers J, Adams S et al. Mitogen-activated proteinkinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 2002, 62(22):6717-6723.PubMedGoogle Scholar
  116. 116.
    Nishinaka Y, Nishiyama A, Masutani H, Oka S, Ahsan KM, Nakayama Y, Ishii Y, Nakamura H, Maeda M, Yodoi J. Loss of thioredoxin-binding protein2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res 2004, 64(4):1287-1292.PubMedCrossRefGoogle Scholar
  117. 117.
    Deroo BJ, Hewitt SC, Peddada SD, Korach KS. Estradiol regulates the thioredoxin antioxidant system in the mouse uterus. Endocrinology 2004, 145(12):5485-5492.PubMedCrossRefGoogle Scholar
  118. 118.
    Escrich E, Moral R, Garcia G, Costa I, Sanchez JA, Solanas M. Identification of novel differentially expressed genes by the effect of a high-fat n-6 diet in experimental breast cancer. Mol Carcinog 2004, 40(2):73-78.PubMedCrossRefGoogle Scholar
  119. 119.
    Berx G, Cleton-Jansen AM, Strumane K, de Leeuw WJ, Nollet F, van Roy F, Cornelisse C. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996, 13(9):1919-1925.PubMedGoogle Scholar
  120. 120.
    Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. Embo J 1995, 14(24):6107-6115.PubMedGoogle Scholar
  121. 121.
    Cleton-Jansen AM. E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer? Breast Cancer Res 2002, 4(1):5-8.PubMedCrossRefGoogle Scholar
  122. 122.
    Becker KF, Reich U, Schott C, Becker I, Berx G, van Roy F, Hofler H. Identification of eleven novel tumor-associated E-cadherin mutations. Mutations in brief no. 215. Online. Hum Mutat 1999, 13(2):171.CrossRefGoogle Scholar
  123. 123.
    Berx G, Van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 2001, 3 (5):289-293.PubMedCrossRefGoogle Scholar
  124. 124.
    Cowin P, Rowlands TM, Hatsell SJ. Cadherins and catenins in breast cancer. Curr Opin Cell Biol 2005, 17(5):499-508.PubMedCrossRefGoogle Scholar
  125. 125.
    Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 2001, 92(3):404-408.PubMedCrossRefGoogle Scholar
  126. 126.
    Mielnicki LM, Asch HL, Asch BB. Genes, chromatin, and breast cancer: an epigenetic tale. J Mammary Gland Biol Neoplasia 2001, 6(2):169-182.PubMedCrossRefGoogle Scholar
  127. 127.
    Strathdee G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 2002, 12(5):373-379.PubMedCrossRefGoogle Scholar
  128. 128.
    Thoreson MA, Reynolds AB. Altered expression of the catenin p120 in human cancer: implications for tumor progression. Differentiation 2002, 70(9-10): 583-589.PubMedCrossRefGoogle Scholar
  129. 129.
    Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 2003, 113(2):207-219.PubMedCrossRefGoogle Scholar
  130. 130.
    Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/ HDAC2 complex. Mol Cell Biol 2004, 24(1):306-319.PubMedCrossRefGoogle Scholar
  131. 131.
    Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A. Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 2004, 117(Pt 13):2827-2839.PubMedCrossRefGoogle Scholar
  132. 132.
    Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003, 116(Pt 3):499-511.PubMedCrossRefGoogle Scholar
  133. 133.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000, 2(2):84-89.PubMedCrossRefGoogle Scholar
  134. 134.
    Knudsen KA, Lin CY, Johnson KR, Wheelock MJ, Keshgegian AA, Soler AP: Lack of correlation between serum levels of E- and P-cadherin fragments and the presence of breast cancer. Hum Pathol 2000, 31(8):961-965.PubMedCrossRefGoogle Scholar
  135. 135.
    Kuroda N, Sugimoto T, Takahashi T, Moriki T, Toi M, Miyazaki E, Hiroi M, Enzan H. Invasive micropapillary carcinoma of the breast: an immunohistochemical study of neoplastic and stromal cells. Int J Surg Pathol 2005, 13 (1):51-55.PubMedCrossRefGoogle Scholar
  136. 136.
    Nagi C, Guttman M, Jaffer S, Qiao R, Keren R, Triana A, Li M, Godbold J, Bleiweiss IJ, Hazan RB. N-cadherin expression in breast cancer: correlation with an aggressive histologic variant-invasive micropapillary carcinoma. Breast Cancer Res Treat 2005, 94(3):225-235.PubMedCrossRefGoogle Scholar
  137. 137.
    De La Cruz C, Moriya T, Endoh M, Watanabe M, Takeyama J, Yang M, Oguma M, Sakamoto K, Suzuki T, Hirakawa H et al. Invasive micropapillary carcinoma of the breast: Clinicopathological and immunohistochemical study. Pathol Int 2004, 54(2):90-96.PubMedCrossRefGoogle Scholar
  138. 138.
    Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Takano Y, Saito K, Piquemal D, Commes T, Watabe M, Gross SC et al. Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene 2004, 23(33):5675-5681.PubMedCrossRefGoogle Scholar
  139. 139.
    Bandyopadhyay S, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D et al. PTEN up-regulates the tumor metastasis suppressor gene Drg-1 in prostate and breast cancer. Cancer Res 2004, 64(21):7655-7660.PubMedCrossRefGoogle Scholar
  140. 140.
    Wang M, Liu YE, Greene J, Sheng S, Fuchs A, Rosen EM, Shi YE. Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 1997, 14(23):2767-2774.PubMedCrossRefGoogle Scholar
  141. 141.
    Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, De Clerck YA, Mundy GR. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest 1997, 99(10):2509-2517.PubMedCrossRefGoogle Scholar
  142. 142.
    Giannelli G, Erriquez R, Fransvea E, Daniele A, Trerotoli P, Schittulli F, Grano M, Quaranta M, Antonaci S. Proteolytic imbalance is reversed after therapeutic surgery in breast cancer patients. Int J Cancer 2004, 109(5):782-785.PubMedCrossRefGoogle Scholar
  143. 143.
    Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, Garcia JJ, Kolch W. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res 2005, 11(20):7392-7397.PubMedCrossRefGoogle Scholar
  144. 144.
    Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB et al. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem 2004, 279(17):17515-17523.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Rajeev S. Samant
    • 1
  • Oystein Fodstad
    • 2
  • Lalita A. Shevde
    • 3
  1. 1.Cancer InstituteUniversity of South AlabamaUSA
  2. 2.Michell Cancer InstituteUniversity of South AlabamaUSA
  3. 3.Cancer InstituteUniversity of South AlabamaUSA

Personalised recommendations