Breast cancer secreted factors alter the bone microenvironment

  • Valerie A. Siclari
  • Theresa A. Guise
  • John M. Chirgwin
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 11)

Abstract

Bone is the most common site of breast cancer metastasis. Over eighty percent of patients with advanced breast cancer develop bone metastases. Once breast cancer has spread to bone, the cancer is incurable and patients develop mostly osteolytic, but also osteoblastic, or mixed bone lesions and suffer from extreme bone pain, skeletal fractures, hypercalcemia, and nerve compression. Current treatment is the use of antiresorptive bisphosphonates, which reduces bone pain and skeletal fractures but does not improve overall survival. Mouse models of bone metastasis have led to an understanding of the complex interactions that occur within bone that contribute to the incurability of the disease. Once breast cancer cells enter bone, a “vicious cycle” develops between breast cancer cells and the other cells within bone. Breast cancer cells secrete factors that stimulate bone cells, causing them in turn to secrete factors back onto the cancer cells. Inhibiting the actions of cancer-secreted factors may break this vicious cycle. The list of tumor-secreted factors is long, but they can be divided into three groups: (1) bone-resorbing, (2) bone-forming, and (3) metastasisopposing factors. These factors may share upstream regulatory pathways. Such central pathways could provide new targets for more effective treatment of bone metastasis. The TGF and hypoxia-induced Hif1 pathways are two leading targets for such adjuvant treatments.

Keywords

breast cancer bone metastasis tumor-secreted factors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman RE. Skeletal complications of malignancy. Cancer 1997; 80(8 Suppl): 1588-1594CrossRefPubMedGoogle Scholar
  2. 2.
    Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 2005; 10(2): 169-180CrossRefPubMedGoogle Scholar
  3. 3.
    Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 2003; 3(6): 453-458CrossRefPubMedGoogle Scholar
  4. 4.
    Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 1989; 8(2): 98-101PubMedGoogle Scholar
  5. 5.
    Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 1986; 261(27): 12665-12674PubMedGoogle Scholar
  6. 6.
    Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 2005; 5 Suppl(2): 46-53CrossRefGoogle Scholar
  7. 7.
    Dallas SL, Rosser JL, Mundy GR, Bonewald LF. Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem 2002; 277(24): 21352-21360CrossRefPubMedGoogle Scholar
  8. 8.
    Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103(2): 197-206CrossRefPubMedGoogle Scholar
  9. 9.
    Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL. Blockade of TGFbeta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109(12): 1551-1559PubMedGoogle Scholar
  10. 10.
    Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002; 109(12): 1607-1615PubMedGoogle Scholar
  11. 11.
    Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM, Cornell JE, Pollock BH, Mundy GR, Sun LZ. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res 2006; 66(13): 6714-6721CrossRefPubMedGoogle Scholar
  12. 12.
    Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, Protter A, Murphy A, Chakravarty J, Dugar S, Schreiner G, Barnard N, Reiss M. Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 2006; 12 (14 Pt 1): 4315-4330CrossRefPubMedGoogle Scholar
  13. 13.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of THE CELL: 4th edn. (Garland Science, NY, 2002)Google Scholar
  14. 14.
    Clines GA, Guise TA. Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocr Relat Cancer 2005; 12(3): 549-583CrossRefPubMedGoogle Scholar
  15. 15.
    Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer. Breast Cancer Res 2000; 2(5): 331-334CrossRefPubMedGoogle Scholar
  16. 16.
    Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL, Padley RJ, Garrett IR, Chirgwin JM, Guise TA. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 2003; 100(19): 10954-10959CrossRefPubMedGoogle Scholar
  17. 17.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3(6): 537-549CrossRefPubMedGoogle Scholar
  18. 18.
    Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of metastatic cancer in bone. Endocr Relat Cancer 1999; 6(3): 333-347CrossRefPubMedGoogle Scholar
  19. 19.
    Chirgwin JM, Mohammad KS, Guise TA. Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact 2004; 4(3): 308-318PubMedGoogle Scholar
  20. 20.
    Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, Gillespie MT. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140(10): 4451-4458CrossRefPubMedGoogle Scholar
  21. 21.
    van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C. Monitoring metastatic behavior of human tumor cells in mice with speciesspecific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 2001; 16(6): 1077-1091CrossRefPubMedGoogle Scholar
  22. 22.
    Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, Bennett RC, Martin TJ. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res 1991; 51(11): 3059-3061PubMedGoogle Scholar
  23. 23.
    Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98(7): 1544-1549CrossRefPubMedGoogle Scholar
  24. 24.
    Henderson M, Danks J, Moseley J, Slavin J, Harris T, McKinlay M, Hopper J, Martin T. Parathyroid hormone-related protein production by breast cancers, improved survival, and reduced bone metastases. J Natl Cancer Inst 2001; 93(3): 234-237CrossRefPubMedGoogle Scholar
  25. 25.
    Yoshiji H, Gomez DE, Shibuya M, Thorgeirsson UP. Expression of vascular endothelial growth factor, its receptor, and other angiogenic factors in human breast cancer. Cancer Res 1996; 56(9): 2013-2016PubMedGoogle Scholar
  26. 26.
    Dales JP, Garcia S, Carpentier S, Andrac L, Ramuz O, Lavaut MN, Allasia C, Bonnier P, Taranger-Charpin C. Prediction of metastasis risk (11-year follow-up) using VEGF-R1, VEGF-R2, Tie-2/Tek and CD105 expression in breast cancer (n=905). Br J Cancer 2004; 90(6): 1216-1221CrossRefPubMedGoogle Scholar
  27. 27.
    Aldridge SE, Lennard TW, Williams JR, Birch MA. Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. Br J Cancer 2005; 92(8): 1531-1537CrossRefPubMedGoogle Scholar
  28. 28.
    Linderholm B, Tavelin B, Grankvist K, Henriksson R. Vascular endothelial growth factor is of high prognostic value in node-negative breast carcinoma. J Clin Oncol 1998; 16(9): 3121-3128PubMedGoogle Scholar
  29. 29.
    Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Nishikawa S, Kodama H. Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 1999; 190(2): 293-298CrossRefPubMedGoogle Scholar
  30. 30.
    Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271(30): 17629-17634PubMedGoogle Scholar
  31. 31.
    Rosen LS. VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 2005; 10(6): 382-391CrossRefPubMedGoogle Scholar
  32. 32.
    Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006; 66(5): 2650-2657CrossRefPubMedGoogle Scholar
  33. 33.
    Miller KD, Trigo JM, Wheeler C, Barge A, Rowbottom J, Sledge G, Baselga J. A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 2005; 11(9): 3369-3376CrossRefPubMedGoogle Scholar
  34. 34.
    Morinaga Y, Fujita N, Ohishi K, Zhang Y, Tsuruo T. Suppression of interleukin- 11-mediated bone resorption by cyclooxygenases inhibitors. J Cell Physiol 1998; 175(3): 247-254CrossRefPubMedGoogle Scholar
  35. 35.
    Singh B, Berry JA, Shoher A, Lucci A. COX-2 induces IL-11 production in human breast cancer cells. J Surg Res 2006; 131(2): 267-275CrossRefPubMedGoogle Scholar
  36. 36.
    Bendre M, Gaddy D, Nicholas RW, Suva LJ. Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res 2003; 415 (Suppl): S39-45CrossRefPubMedGoogle Scholar
  37. 37.
    Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS, Wessner LL, Martinez A, Guise TA, Chirgwin JM, Gaddy D, Suva LJ. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 2005; 65(23): 11001-11009CrossRefPubMedGoogle Scholar
  38. 38.
    Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpe S, Vermeulen PB, Dirix LY. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 2004; 10(21): 7157-7162CrossRefPubMedGoogle Scholar
  39. 39.
    Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, Suva LJ. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 2002; 62(19): 5571-5579PubMedGoogle Scholar
  40. 40.
    Salcedo R, Martins-Green M, Gertz B, Oppenheim JJ, Murphy WJ. Combined administration of antibodies to human interleukin 8 and epidermal growth factor receptor results in increased antimetastatic effects on human breast carcinoma xenografts. Clin Cancer Res 2002; 8(8): 2655-2665PubMedGoogle Scholar
  41. 41.
    Guise TA, Yin JJ, Mohammad KS. Role of endothelin-1 in osteoblastic bone metastases. Cancer 2003; 97(3 Suppl): 779-784CrossRefPubMedGoogle Scholar
  42. 42.
    Hagemann T, Binder C, Binder L, Pukrop T, Trumper L, Grimshaw MJ. Expression of endothelins and their receptors promotes an invasive phenotype of breast tumor cells but is insufficient to induce invasion in benign cells. DNA Cell Biol 2005; 24(11): 766-776CrossRefPubMedGoogle Scholar
  43. 43.
    Oehler MK, Fischer DC, Orlowska-Volk M, Herrle F, Kieback DG, Rees MC, Bicknell R. Tissue and plasma expression of the angiogenic peptide adrenomedullin in breast cancer. Br J Cancer 2003; 89(10): 1927-1933CrossRefPubMedGoogle Scholar
  44. 44.
    Cornish J, Callon KE, Coy DH, Jiang NY, Xiao L, Cooper GJ, Reid IR. Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo. Am J Physiol 1997; 273(6 Pt 1): E1113-1120PubMedGoogle Scholar
  45. 45.
    Cornish J, Grey A, Callon KE, Naot D, Hill BL, Lin CQ, Balchin LM, Reid IR. Shared pathways of osteoblast mitogenesis induced by amylin, adrenomedullin, and IGF-1. Biochem Biophys Res Commun 2004; 318(1): 240-246CrossRefPubMedGoogle Scholar
  46. 46.
    Martinez A, Julian M, Bregonzio C, Notari L, Moody TW, Cuttitta F. Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology 2004; 145 (8): 3858-3865CrossRefPubMedGoogle Scholar
  47. 47.
    Ma W, Chabot JG, Quirion R. A role for adrenomedullin as a pain-related peptide in the rat. Proc Natl Acad Sci U S A 2006; 103(43): 16027-16032CrossRefPubMedGoogle Scholar
  48. 48.
    Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T. Tumor-derived platelet- derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res 2002; 62(3): 917-923PubMedGoogle Scholar
  49. 49.
    Lev DC, Kim SJ, Onn A, Stone V, Nam DH, Yazici S, Fidler IJ, Price JE. Inhibition of platelet-derived growth factor receptor signaling restricts the growth of human breast cancer in the bone of nude mice. Clin Cancer Res 2005; 11(1): 306-314PubMedGoogle Scholar
  50. 50.
    Seymour L, Bezwoda WR. Positive immunostaining for platelet derived growth factor (PDGF) is an adverse prognostic factor in patients with advanced breast cancer. Breast Cancer Res Treat 1994; 32(2): 229-233CrossRefPubMedGoogle Scholar
  51. 51.
    Seymour L, Dajee D, Bezwoda WR. Tissue platelet derived-growth factor (PDGF) predicts for shortened survival and treatment failure in advanced breast cancer. Breast Cancer Res Treat 1993; 26(3): 247-252CrossRefPubMedGoogle Scholar
  52. 52.
    Safadi FF, Xu J, Smock SL, Kanaan RA, Selim AH, Odgren PR, Marks SC, Jr., Owen TA, Popoff SN. Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J Cell Physiol 2003; 196(1): 51-62CrossRefPubMedGoogle Scholar
  53. 53.
    Shimo T, Kubota S, Kondo S, Nakanishi T, Sasaki A, Mese H, Matsumura T, Takigawa M. Connective tissue growth factor as a major angiogenic agent that is induced by hypoxia in a human breast cancer cell line. Cancer Lett 2001; 174(1): 57-64CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE. Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer 2004; 11(4): 781-791CrossRefPubMedGoogle Scholar
  55. 55.
    Shimo T, Kubota S, Yoshioka N, Ibaragi S, Isowa S, Eguchi T, Sasaki A, Takigawa M. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. J Bone Miner Res 2006; 21(7): 1045-1059CrossRefPubMedGoogle Scholar
  56. 56.
    Schutze N, Kunzi-Rapp K, Wagemanns R, Noth U, Jatzke S, Jakob F. Expression, purification, and functional testing of recombinant CYR61/CCN1. Protein Expr Purif 2005; 42(1): 219-225CrossRefPubMedGoogle Scholar
  57. 57.
    Bartholin L, Wessner LL, Chirgwin JM, Guise TA. The human Cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells. Cancer Lett (2006)Google Scholar
  58. 58.
    Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V. Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat (2006)Google Scholar
  59. 59.
    Chirgwin JM, Mohammad KS, Guise TA. Parathyroid hormone-related protein (PTHrP) fragments are potent agonists of the endothelin A receptor (Abstract). Book of the Eighth International Conference on Endothelin 29 (2003)Google Scholar
  60. 60.
    Langlois C, Letourneau M, Turcotte K, Detheux M, Fournier A. PTHrP fragments 1-16 and 1-23 do not bind to either the ETA or the ETB endothelin receptors. Peptides 2005; 26(8): 1436-1440CrossRefPubMedGoogle Scholar
  61. 61.
    Narita D, Raica M, Suciu C, Cimpean A, Anghel A. Immunohistochemical expression of androgen receptor and prostate-specific antigen in breast cancer. Folia Histochem Cytobiol 2006; 44(3): 165-172PubMedGoogle Scholar
  62. 62.
    Narita D, Cimpean AM, Anghel A, Raica M. Prostate-specific antigen value as a marker in breast cancer. Neoplasma 2006; 53(2): 161-167PubMedGoogle Scholar
  63. 63.
    Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 1992; 32(2): 160-167CrossRefPubMedGoogle Scholar
  64. 64.
    Arnold SF, Tims E, McGrath BE. Identification of bone morphogenetic proteins and their receptors in human breast cancer cell lines: importance of BMP2. Cytokine 1999; 11(12): 1031-1037CrossRefPubMedGoogle Scholar
  65. 65.
    Pouliot F, Blais A, Labrie C. Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells. Cancer Res 2003; 63(2): 277-281PubMedGoogle Scholar
  66. 66.
    Ghosh-Choudhury N, Ghosh-Choudhury G, Celeste A, Ghosh PM, Moyer M, Abboud SL, Kreisberg J. Bone morphogenetic protein-2 induces cyclin kinase inhibitor p21 and hypophosphorylation of retinoblastoma protein in estradiol- treated MCF-7 human breast cancer cells. Biochim Biophys Acta 2000; 1497(2): 186-196PubMedGoogle Scholar
  67. 67.
    Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Buerger H. First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol 2005; 206(3): 366-376CrossRefPubMedGoogle Scholar
  68. 68.
    Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A, Geyer A, Waldau A, Hortschansky P, Schmidt A, Hoffken K, Wolft S, Harris AL. Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 2005; 27(2): 401-407PubMedGoogle Scholar
  69. 69.
    Feeley BT, Gamradt SC, Hsu WK, Liu N, Krenek L, Robbins P, Huard J, Lieberman JR. Influence of BMPs on the formation of osteoblastic lesions in metastatic prostate cancer. J Bone Miner Res 2005; 20(12): 2189-2199CrossRefPubMedGoogle Scholar
  70. 70.
    Feeley BT, Krenek L, Liu N, Hsu WK, Gamradt SC, Schwarz EM, Huard J, Lieberman JR. Overexpression of noggin inhibits BMP-mediated growth of osteolytic prostate cancer lesions. Bone 2006; 38(2): 154-166CrossRefPubMedGoogle Scholar
  71. 71.
    Fisher JL, Thomas-Mudge RJ, Elliott J, Hards DK, Sims NA, Slavin J, Martin TJ, Gillespie MT. Osteoprotegerin overexpression by breast cancer cells enhances orthotopic and osseous tumor growth and contrasts with that delivered therapeutically. Cancer Res 2006; 66(7): 3620-3628CrossRefPubMedGoogle Scholar
  72. 72.
    Park HR, Min SK, Cho HD, Kim DH, Shin HS, Park YE. Expression of osteoprotegerin and RANK ligand in breast cancer bone metastasis. J Korean Med Sci 2003; 18(4): 541-546PubMedGoogle Scholar
  73. 73.
    Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61(11): 4432-4436PubMedGoogle Scholar
  74. 74.
    Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP, Harousseau JL, Lipton A, Mariette X, Williams CD, Nakanishi A, Holloway D, Martin SW, Dunstan CR, Bekker PJ. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003; 97(3 Suppl): 887-892CrossRefPubMedGoogle Scholar
  75. 75.
    Onyia JE, Galvin RJ, Ma YL, Halladay DL, Miles RR, Yang X, Fuson T, Cain RL, Zeng QQ, Chandrasekhar S, Emkey R, Xu Y, Thirunavukkarasu K, Bryant HU, Martin TJ. Novel and selective small molecule stimulators of osteoprotegerin expression inhibit bone resorption. J Pharmacol Exp Ther 2004; 309(1): 369-379CrossRefPubMedGoogle Scholar
  76. 76.
    Body JJ, Facon T, Coleman R, Lipton A, Geurs F, Fan M, Holloway D, Peterson MC, Bekker P. A study of the biological receptor activator of nuclear factor-kB ligand inhibitor, Denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006; 12(4): 1221-1228CrossRefPubMedGoogle Scholar
  77. 77.
    Yamada N, Niwa S, Tsujimura T, Iwasaki T, Sugihara A, Futani H, Hayashi S, Okamura H, Akedo H, Terada N. Interleukin-18 and interleukin-12 synergistically inhibit osteoclastic bone-resorbing activity. Bone 2002; 30(6): 901-908CrossRefPubMedGoogle Scholar
  78. 78.
    Gunel N, Coskun U, Sancak B, Gunel U, Hasdemir O, Bozkurt S. Clinical importance of serum interleukin-18 and nitric oxide activities in breast carcinoma patients. Cancer 2002; 95(3): 663-667CrossRefPubMedGoogle Scholar
  79. 79.
    Udagawa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT. Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colonystimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 1997; 185(6): 1005-1012CrossRefPubMedGoogle Scholar
  80. 80.
    Makiishi-Shimobayashi C, Tsujimura T, Iwasaki T, Yamada N, Sugihara A, Okamura H, Hayashi S, Terada N. Interleukin-18 up-regulates osteoprotegerin expression in stromal/osteoblastic cells. Biochem Biophys Res Commun 2001; 281(2): 361-366CrossRefPubMedGoogle Scholar
  81. 81.
    Soheir AL, Eissa MD, Samar A, Zaki MD, Shereen M, El-Maghraby MD, Dalia Y, Kadry MD. Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J Egyptian Nat. Cancer Inst. 2005; 17(1): 51-55Google Scholar
  82. 82.
    Nakata A, Tsujimura T, Sugihara A, Okamura H, Iwasaki T, Shinkai K, Iwata N, Kakishita E, Akedo H, Terada N. Inhibition by interleukin 18 of osteolytic bone metastasis by human breast cancer cells. Anticancer Res 1999; 19(5B): 4131-4138PubMedGoogle Scholar
  83. 83.
    Shulewitz M, Soloviev I, Wu T, Koeppen H, Polakis P, Sakanaka C. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 2006; 25(31): 4361-4369CrossRefPubMedGoogle Scholar
  84. 84.
    Hall CL, Kang S, MacDougald OA, Keller ET. Role of Wnts in prostate cancer bone metastases. J Cell Biochem 2006; 97(4): 661-672CrossRefPubMedGoogle Scholar
  85. 85.
    Michaelson JS, Leder P. beta-catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 2001; 20(37): 5093-5099CrossRefPubMedGoogle Scholar
  86. 86.
    Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B, Galm O, Camara O, Durst M, Kristiansen G, Huszka C, Knuchel R, Dahl E. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 2006; 25(24): 3479-3488CrossRefPubMedGoogle Scholar
  87. 87.
    Hall CL, Bafico A, Dai J, Aaronson SA, Keller ET. Prostate cancer cells promote osteoblastic bone metastases through Wnts, Cancer Res 2005; 65(17): 7554-7560PubMedGoogle Scholar
  88. 88.
    Kim J, Zhang X, Rieger-Christ KM, Summerhayes IC, Wazer DE, Paulson KE, Yee AS. Suppression of Wnt signaling by the green tea compound (-)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcripttional repressor HBP1. J Biol Chem 2006; 281(16): 10865-10875CrossRefPubMedGoogle Scholar
  89. 89.
    Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106(9): 3160-3165CrossRefPubMedGoogle Scholar
  90. 90.
    Heider U, Hofbauer LC, Zavrski I, Kaiser M, Jakob C, Sezer O. Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochem Biophys Res Commun 2005; 338(2): 687-693CrossRefPubMedGoogle Scholar
  91. 91.
    Shinozuka T, Shimada K, Matsui S, Yamane T, Ama M, Fukuda T, Taki M, Takeda Y, Otsuka E, Yamato M, Mochizuki S, Ohhata K, Naito S. Potent and selective cathepsin K inhibitors. Bioorg Med Chem 2006; 14(20): 6789-6806CrossRefPubMedGoogle Scholar
  92. 92.
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3(10): 721-732CrossRefPubMedGoogle Scholar
  93. 93.
    Kim SJ, Uehara H, Yazici S, He J, Langley RR, Mathew P, Fan D, Fidler IJ. Modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res 2005; 65(9): 3707-3715CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Valerie A. Siclari
    • 1
  • Theresa A. Guise
    • 2
  • John M. Chirgwin
    • 3
  1. 1.Division of EndocrinologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of EndocrinologyUniversity of VirginiaCharlottesvilleUSA
  3. 3.Division of EndocrinologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations