Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications

  • Uwe Kortshagen
  • Lorenzo Mangolini
  • Ameya Bapat
Chapter

Abstract

Functional nanocrystals are widely considered as novel building blocks for nanostructured materials and devices. Numerous synthesis approaches have been proposed in the solid, liquid and gas phase. Among the gas phase approaches, low pressure nonthermal plasmas offer some unique and beneficial features. Particles acquire a unipolar charge which reduces or eliminates agglomeration; particles can be electrostatically confined in a reactor based on their charge; strongly exothermic reactions at the particle surface heat particles to temperatures that significantly exceed the gas temperature and facilitate the formation of high quality crystals. This paper discusses two examples for the use of low pressure nonthermal plasmas. The first example is that of a constricted capacitive plasma for the formation of highly monodisperse, cubic-shaped silicon nanocrystals with an average size of 35 nm. The growth process of the particles is discussed. The silicon nanocubes have successfully been used as building blocks for nanoparticle-based transistors. The second example focuses on the synthesis of photoluminescent silicon crystals in the 3–6 nm size range. The synthesis approach described has enabled the synthesis of macroscopic quantities of quantum dots, with mass yields of several mg/hour. Quantum yields for photoluminescence as high as 67% have been achieved.

Key words

silicon nanocrystals nanoelectronics luminescence plasma reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alivisatos A.P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937.CrossRefGoogle Scholar
  2. Baldwin R.K., K.A. Pettigrew, J.C. Garno, P.P. Power, G.-Y. Liu & S.M. Kauzlarich, 2002. Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124(7), 1150–1151.CrossRefGoogle Scholar
  3. Banerjee S., S. Huang, T. Yamanaka & S. Oda, 2002. Evidence of storing and erasing of electrons in a nanocrystalline-Si based memory device at 77 K. J. Vac. Sci. Technol. B 20(3), 1135–1138.CrossRefGoogle Scholar
  4. Bapat A., C. Anderson, C.R. Perrey, C.B. Carter, S.A. Campbell & U. Kortshagen, 2004. Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys. Controlled Fusion 46(12), B97–B109.CrossRefGoogle Scholar
  5. Barnard A. & P. Zapol, 2004. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121(9), 4276–4283.CrossRefGoogle Scholar
  6. Batson P.E. & J.R. Heath, 1993. Electron energy loss spectroscopy of single silicon nanocrystals: the conduction band. Phys. Rev. Lett. 71(6), 911–914.CrossRefGoogle Scholar
  7. Borsella E., M. Falconieri, S. Botti, S. Martelli, F. Bignoli, L. Costa, S. Grandi, L. Sangaletti, B. Allieri & L. Depero, 2001. Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol-gel processing. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. B 79(1), 55–62.Google Scholar
  8. Bouchoule A. & L. Boufendi, 1993. Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Sci. Technol. 2, 204.CrossRefGoogle Scholar
  9. Boufendi L. & A. Bouchoule, 1994. Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol. 3, 263.CrossRefGoogle Scholar
  10. Brus L.E., 1991. Quantum crystallites and nonlinear optics. Appl. Phys. A 53, 465–474.CrossRefGoogle Scholar
  11. Brus L.E., P.J. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler & P.H. Citrin, 1995. Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117, 2915–2922.CrossRefGoogle Scholar
  12. Buriak J.M., 2002. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102(5), 1271–1308.CrossRefGoogle Scholar
  13. Campbell, S.A., U. Kortshagen, A. Bapat, Y. Dong, S. Hilchie & Z. Shen, 2004. The Production and electrical characterization of free standing cubic single crystal silicon nanoparticles. J. Mater 56(10), 26–28.Google Scholar
  14. Canham L., 2000. Gaining light from silicon. Nature 408, 411–412.CrossRefGoogle Scholar
  15. Canham L.T., 1990. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046.CrossRefGoogle Scholar
  16. Carlile R.N., S. Geha, J.F. O’Hanlon & J.C. Stewart, 1991. Electrostatic trapping of contamination particles in a process plasma environment. Appl. Phys. Lett. 59, 1167.CrossRefGoogle Scholar
  17. Collins R.T., P.M. Fauchet & M.A. Tischler, 1997. Porous silicon: from luminescence to LEDs. Phys. Today 50, 24.Google Scholar
  18. Colvin V.L., M.C. Schlamp & A.P. Alivisatos, 1994. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357.CrossRefGoogle Scholar
  19. Cullis A.G. & L.T. Canham, 1991. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 335, 335–338.CrossRefGoogle Scholar
  20. Dabbousi B.O., M.G. Bawendi, O. Onitsuka & M.F. Rubner, 1995. Electroluminescence from Cdse quantum-dot polymer composites. Appl. Phys. Lett. 66(11), 1316–1318.CrossRefGoogle Scholar
  21. Ding, Y., Y. Dong, A. Bapat, J. Deneen, C.B. Carter, U. Kortshagen & S.A. Campell, 2005. Single nanoparticle semiconductor devices. IEEE Trans. Electron Dev. (accepted for publication).Google Scholar
  22. Ding Z., B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel & A.J. Bard, 2002. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297.CrossRefGoogle Scholar
  23. Draeger E.W., J.C. Grossman, A.J. Williamson & G. Galli, 2004. Optical properties of passivated silicon nanoclusters: The role of synthesis. J. Chem. Phys. 120(22), 10807–10814.CrossRefGoogle Scholar
  24. Eaglesham D.J., A.E. White, L.C. Feldman, N. Moriya & D.C. Jacobson, 1993. Equilibrium shape of Si. Phys. Rev. Lett. 70(11), 1643–1646.CrossRefGoogle Scholar
  25. Ehbrecht M. & F. Huisken, 1999. Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. Phys. Rev. B: Condens. Matter Mater. Phys. 59(4), 2975–2985.Google Scholar
  26. Franzò G., A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica & F. Priolo, 2002. Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A: Mat. Sci. Proc. 74, 1–5.CrossRefGoogle Scholar
  27. Friedlander S.K., 2000 Smoke, Dust, and Haze — Fundamentals of Aerosol Dynamics. New York: Oxford University Press.Google Scholar
  28. Fu Y., M. Willander, A. Dutta & S. Oda, 2000. Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias. Superlattices Microstruct 28(3), 177–187.CrossRefGoogle Scholar
  29. Furukawa S. & T. Miyasato, 1988. Three-dimensional quantum well effects in ultrafine silicon particles. Jpn. J. Appl. Phys. 27(11), L2207.Google Scholar
  30. Gerberich W.W., W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry & S.L. Girshick, 2003. Superhard silicon nanospheres. J. Mech. Phys. Solids. 51, 979–992.CrossRefGoogle Scholar
  31. Goldstein A.N., C.M. Echer & A.P. Alivisatos, 1992. Melting in semiconductor nanocrystals. Science 256, 1425–1427.CrossRefGoogle Scholar
  32. Goree J., 1994. Charging of particles in a plasma. Plasma Sources Sci. Technol. 3, 400.CrossRefGoogle Scholar
  33. Holmes J.D., K.J. Ziegler, C. Doty, L.E. Pell, K.P. Johnston & B.A. Korgel, 2001. Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743–3748.CrossRefGoogle Scholar
  34. Holtz R.L., V. Provenzano & M.A. Imam, 1996. Overview of nanophase metals and alloys for gas sensors, getters, and hydrogen storage. Nanostruct. Mater. 7, 259–264.CrossRefGoogle Scholar
  35. Huisken F., D. Amans, G. Ledoux, H. Hofmeister, F. Cichos & J. Martin, 2003. Nanostructuration with visible-light-emitting silicon nanocrystals. New J. Phys. 5, 1–10Paper No. 10.CrossRefGoogle Scholar
  36. Kennedy M.K., F.E. Kruis, H. Fissan & B.R. Mehta, 2003. Fully automated, gas sensing, and electronic parameter measurement setup for miniaturized nanoparticle gas sensors. Rev. Sci. Instr. 74(11), 4908–4915.CrossRefGoogle Scholar
  37. Kennedy M.K., F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert & G. Dumpich, 2003. Tailored nanoparticle films from monosized tin oxide nanocrystals: particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys. 93(1), 551–560.CrossRefGoogle Scholar
  38. Kim T.W., D.C. Choo, J.H. Shim & S.O. Kang, 2002. Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam. Appl. Phys. Lett. 80(12), 2168–2170.CrossRefGoogle Scholar
  39. Klein D.L., R. Roth, A.K.L. Lim, A.P. Alivisatos & P.L. McEuen, 1997. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701.CrossRefGoogle Scholar
  40. Kortshagen U. & U. Bhandarkar, 1999. Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60(1), 887.CrossRefGoogle Scholar
  41. Ledoux G., J. Gong, F. Huisken, O. Guillois & C. Reynaud, 2002. Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl. Phys. Lett. 80(25), 4834–4836.CrossRefGoogle Scholar
  42. Ledoux G., O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn & V. Paillard, 2000. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62(23), 15942–15951.CrossRefGoogle Scholar
  43. Li X., Y. He, S.S. Talukdar & M.T. Swihart, 2003. Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19(20), 8490–8496.CrossRefGoogle Scholar
  44. Littau K.A., P.J. Szajowski, A.J. Muller, A.R. Kortan & L.E. Brus, 1993. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97, 1224–1230.CrossRefGoogle Scholar
  45. Mangolini L., E. Thimsen & U. Kortshagen, 2005. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4), 655–659.CrossRefGoogle Scholar
  46. Matsoukas T., 1997. The coagulation rate of charged aerosols in ionized gases. J. Colloid. Interface Sci. 187, 474.CrossRefGoogle Scholar
  47. Matsoukas T. & M. Russel, 1995. Particle charging in low-pressure plasmas. J. Appl. Phys. 77, 4285.CrossRefGoogle Scholar
  48. Nayfeh M., O. Akcakir, J. Therrien, Z. Yamani, N. Barry, W. Yu & E. Gratton, 1999. Highly nonlinear photoluminescence threshold in porous silicon. Appl. Phys. Lett. 75(26), 4112–4114.CrossRefGoogle Scholar
  49. Nayfeh M.H., N. Barry, J. Therrien, O. Akcakir, E. Gratton & G. Belomoin, 2001. Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl. Phys. Lett. 78(8), 1131–1133.CrossRefGoogle Scholar
  50. Nishiguchi K. & S. Oda, 2000. Electron transport in a single silicon quantum structure using a vertical silicon probe. J. Appl. Phys. 88(7), 4186–4190.CrossRefGoogle Scholar
  51. Onischuk A.A., A.I. Levykin, V.P. Strunin, K.K. Sabelfeld & V.N. Panfilov, 2000. Aggregate formation under homogeneous silane thermal decomposition. J. Aerosol Sci. 31(11), 1263–1281.CrossRefGoogle Scholar
  52. Onischuk A.A., A.I. Levykin, V.P. Strunin, M.A. Ushakova, R.I. Samoilova, K.K. Sabelfeld & V.N. Panfilov, 2000. Aerosol formation under heterogeneous/homogeneous thermal decomposition of silane: experiment and numerical modeling. J. Aerosol Sci. 31(8), 879–906.CrossRefGoogle Scholar
  53. O’Regan B. & M. Grätzel, 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737.CrossRefGoogle Scholar
  54. Ostraat M.L., J.W. De Blauwe, M.L. Green, L.D. Bell, H.A. Atwater & R.C. Flagan, 2001a. Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. J. Electrochem. Soc. 148(5), G265–G270.CrossRefGoogle Scholar
  55. Ostraat M.L., J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan & H.A. Atwater, 2001b. Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3), 433–435.CrossRefGoogle Scholar
  56. Park N.-M., T.-S. Kim & S.-J. Park, 2001. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575–2577.CrossRefGoogle Scholar
  57. Pettigrew K.A., Q. Liu, P.P. Power & S.M. Kauzlarich, 2003. Solution synthesis of alkyl-and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15(21), 4005–4011.CrossRefGoogle Scholar
  58. Puzder A., A.J. Williamson, J.C. Grossman & G. Galli, 2002. Surface chemistry of silicon nanoclusters. Phys. Rev. Lett. 88(9), 097401–097404.CrossRefGoogle Scholar
  59. Puzder A., A.J. Williamson, J.C. Grossman & G. Galli, 2003. Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125(9), 2786–2791.CrossRefGoogle Scholar
  60. Reboredo F.A., A. Franceschetti & A. Zunger, 1999. Excitonic transitions and exchange splitting in Si quantum dots. Appl. Phys. Lett. 75(19), 2972–2974.CrossRefGoogle Scholar
  61. Sankaran R.M., D. Holunga, R.C. Flagan & K.P. Giapis, 2005. Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5(3), 531–535.CrossRefGoogle Scholar
  62. Schweigert V.A. & I.V. Schweigert, 1996. Coagulation in low-temperature plasmas. J. Phys. D: Appl. Phys. 29, 655.CrossRefGoogle Scholar
  63. Selwyn G.S., K.L. Haller & E.F. Patterson, 1993. Trapping and behavior of particulates in a radio frequency magnetron etching tool. J. Vac. Sci. Technol. A 11, 1132.CrossRefGoogle Scholar
  64. Selwyn G.S., J.E. Heidenreich & H.L. Haller, 1990. Particle trapping phenomena in radio frequency plasmas. Appl. Phys. Lett. 57, 1876.CrossRefGoogle Scholar
  65. Shen Z., T. Kim, U. Kortshagen, P. McMurry & S. Campbell, 2003. Formation of highly uniform silicon nanoparticles in high density silane plasmas. J. Appl. Phys. 94(4), 2277–2283.CrossRefGoogle Scholar
  66. Shi F.G., 1994. Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5), 1307–1312.Google Scholar
  67. St. John J., J.L. Coffer, Y. Chen & R.F. Pinizzotto, 1999. Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals. J. Am. Chem. Soc. 121, 1888–1892.CrossRefGoogle Scholar
  68. Stekolnikov A.A., J. Furthmüller & F. Bechstedt, 2002. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction. Phys. Rev. B 65, 115318.CrossRefGoogle Scholar
  69. Stoffels E., W.W. Stoffels, G.M.W. Kroesen & F.J.D. Hoog, 1996. Dust formation and charging in an Ar/SiH4 radio-frequency discharge. J. Vac. Sci. Technol. A 14, 556.CrossRefGoogle Scholar
  70. Takahashi N., H. Ishikuro & T. Hiramoto, 2000. Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl. Phys. Lett. 76(2), 209–211.CrossRefGoogle Scholar
  71. Tiwari S., F. Rana, K. Chan, L. Shi & H. Hanafi, 1996a. Single charge and confinement effects in nano-crystal memories. Appl. Phys. Lett. 69, 1232.CrossRefGoogle Scholar
  72. Tiwari S., F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé & K. Chan, 1996b. A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377.CrossRefGoogle Scholar
  73. Vasiliev I., J.R. Chelikowsky & R.M. Martin, 2002. Surface oxidation effects on the optical properties of silicon nanocrystals. Phys. Rev. B (Condensed Matter and Materials Physics) 65(12), 121302.CrossRefGoogle Scholar
  74. Volkening F.A., M.N. Naidoo, G.A. Candela, R.L. Holtz & V. Provenzano, 1995. Characterization of nanocrystalline palladium for solid state gas sensor applications. Nanostruct. Mater. 5, 373–382.CrossRefGoogle Scholar
  75. Watanabe Y. & M. Shiratani, 1993. Growth kinetics and behavior of dust particles in silane plasmas. Jpn. J. Appl. Phys. 32, 3074.CrossRefGoogle Scholar
  76. Wilcoxon J.P. & G.A. Samara, 1999. Tailorable, visible light emission from silicon nanocrystals. Appl. Phys. Lett. 74(21), 3164–3166.CrossRefGoogle Scholar
  77. Wilcoxon J.P., G.A. Samara & P.N. Provencio, 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60(4), 2704–2714.CrossRefGoogle Scholar
  78. Wolkin M.V., J. Jorne, P.M. Fauchet, G. Allan & C. Delerue, 1999. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82(1), 197.CrossRefGoogle Scholar
  79. Zhang Z., M. Zhao & Q. Jiang, 2001. Melting temperature of semiconductor nanocrystals in the mesoscopic size range. Semicond. Sci. Technol. 16, L33–L35.CrossRefGoogle Scholar
  80. Zhou Z., L. Brus & R. Friesner, 2003a. Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett. 3(2), 163–167.CrossRefGoogle Scholar
  81. Zhou Z., R.A. Friesner & L. Brus, 2003b. Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 125, 15599–15607.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Uwe Kortshagen
    • 1
  • Lorenzo Mangolini
    • 1
  • Ameya Bapat
    • 1
  1. 1.Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations