Skip to main content

Abstract

Phylogenetic, paleodietary, and developmental studies of hominoid primates frequently make use of the post-canine dentition, in particular molar teeth. To study the thickness and shape of molar enamel and dentine, internal dental structures must be revealed (e.g., the location of dentine horn apices), typically necessitating the production of physical sections through teeth. The partially destructive nature of such studies limits sample sizes and access to valuable fossil specimens, which has led scholars to apply several methods of radiographic visualization to the study of teeth. Radiographic methods aimed at visualizing internal dental structures include lateral flat-plane X-rays, ultrasound, terra-hertz imaging, and computed tomography. Each of these techniques has resolution limitations rendering them inadequate for accurately reconstructing both the enamel-dentine junction and the outer enamel surface; the majority of studies are thus performed using physical sections of teeth. A comparatively new imaging technique, micro-computed tomography (mCT), accurately portrays the enamel-dentine junction of primate molars, and provides accurate measurements of enamel cap thickness and morphology. The research presented here describes methodological parameters pertinent to mCT studies of molars (slice thickness and pixel resolution), and the observable impact on measurement accuracy when these parameters are altered. Measurements taken on a small, taxonomically diverse sample of primate molars indicate that slice thickness should be conservatively set at approximately 3.45 % of specimen length, and image resolution should be maximized (ideally, greater than or equal to 2048 × 2048 pixels per image) in order to ensure measurement accuracy. After discussing this base-line protocol for future mCT studies of the primate dentition, illustrative applications of this imaging technology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P.,1992. Evolution and environment in the Hominoidea. Nature 360, 641–646.

    Article  Google Scholar 

  • Andrews P., Martin L.,1991. Hominoid dietary evolution. Philosophical Transactions of the Royal Society of London B. Biological Sciences 334, 199–209.

    Article  Google Scholar 

  • Brunet, M., Guy, F., Pilbeam, D., Mackaye, H.T., Likius, A., Ahounta, D., Beauvilain, A., Blondel, C., Bocherens, H., Boisserie, J.R., De Bonis, L., Coppens, Y., Dejax, J., Denys, C., Duringer, P., Eisenmann, V.R., Fanone, G., Fronty, P., Geraads, D., Lehmann, T., Lihoreau, F., Louchart, A., Mahamat, A., Merceron, G., Mouchelin, G., Otero, O., Campomanes, P.P., De Leon, M.P., Rage, J.C., Sapanet, M., Schuster, M., Sudre, J., Tassy, P., Valentin, X., Vignaud, P., Viriot, L., Zazzo, A., Zollikofer, C.,2002. A new hominid from the Upper Miocene of Chad, central Africa. Nature 418, 145–151.

    Article  Google Scholar 

  • Chaimanee, Y., Jolly D., Benammi, M., Tafforeau, P., Duzer, D., Moussa, I., Jaeger, J.J.,2003. A Middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65.

    Article  Google Scholar 

  • Corruccini, R.S.,1987. The Dentinoenamel Junction in Primates. International Journal of Primatology 8, 99–114.

    Article  Google Scholar 

  • Crawley, D., Longbottom, C., Wallace, V.P., Cole, B., Arnone, D., Pepper, M.,2003. Three-dimensional terahertz pulse imaging of dental tissue. Journal of Biomedical Optics. 8, 303–307.

    Article  Google Scholar 

  • Daegling, D.J., Hylander, W.L.,1997. Occlusal forces and mandibular bone strain: Is the primate jaw ‘‘overdesigned’’? Journal of Human Evolution 33, 705–717.

    Article  Google Scholar 

  • Gantt, D.G.,1977. Enamel of primate teeth: its thickness and structure with reference to functional and phyletic implications. Ph.d. Dissertation, Washington University, St. Louis, MO.

    Google Scholar 

  • Grine, F.E.,1991. Computed tomography and the measurement of enamel thickness in extant hominoids: implications for its paleontological application. Palaeontologia Africana 28, 61–69.

    Google Scholar 

  • Grine F.E.,2004. Geographic variation in tooth enamel thickness does not support Neandertal involvement in the ancestry of modern Europeans. South African Journal of Science 100, 389–394.

    Google Scholar 

  • Grine, F.E., Martin, L.,1988. Enamel thickness and development in Australopithecus and Paranthropus. In: Grine, F.E. (Ed.), Evolutionary History of the “Robust” Australopithecines. Aldine de Gruyter, New York.

    Google Scholar 

  • Grine, F.E., Stevens, N.J., Jungers, W.L.,2001. An evaluation of dental radiograph accuracy in the measurement of enamel thickness. Archives of Oral Biology 46, 1117–1125.

    Article  Google Scholar 

  • Kono, R.,2004. Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective. Anthropological Science 112, 121–146.

    Article  Google Scholar 

  • Korenhof, C.A.W.,1960. Morphogenetical Aspects of the Human Upper Molar. Uitgeversmaatschappij Neerlandia, Utrecht.

    Google Scholar 

  • Korenhof, C.A.W.,1961. The enamel-dentine border: a new morphological factor in the study of the (human) molar pattern. Proceedings of Koninklijke Nederlands 64B, 639–664.

    Google Scholar 

  • Korenhof, C.A.W.,1978. Remnants of the trigonid crests in Medieval molars of Man in Java. In:Butler, P.M., Joysey, K.A. (Eds.), Development, Function, and Evolution of Teeth. Academic Press, New York, pp. 157–170.

    Google Scholar 

  • Korenhof, C.A.W.,1982. Evolutionary trends of the inner enamel anatomy of deciduous molars from Sangiran (Java, Indonesia). In: Kurten, B. (Ed.), Teeth: Form, Function, and Evolution. Columbia University Press New York, pp. 350–365.

    Google Scholar 

  • Martin, L.B.,1983. Relationships of the later Miocene Hominoidea. Ph.D. Dissertation, University College London, England.

    Google Scholar 

  • Martin, L.B.,1985. Significance of enamel thickness in hominoid evolution. Nature 314, 260–263.

    Article  Google Scholar 

  • Martin, L.B., Olejniczak, A.J., Maas, M.C.,2003. Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus. Journal of Human Evolution 45, 351–367.

    Article  Google Scholar 

  • Miller, G.S.,1915. The jaw of Piltdown Man. Smithsonian Miscellaneous Collections 65, 1–31.

    Google Scholar 

  • Olejniczak, A.J.,2005. Mesiodistal and angular obliquity in studies of dental sections. American Journal of Physical Anthropology supplement, 126, 160.

    Google Scholar 

  • Olejniczak, A.J., Grine, F.E.,2006. Assessment of the accuracy of dental enamel thickness using high-resolution micro-focal X-ray computed tomography. Anatomical Record Part A 288A, 263–275.

    Article  Google Scholar 

  • Olejniczak, A.J., Grine, F.E.,2005. High-resolution measurement of Neandertal tooth enamel thickness by micro-focal computed tomography (mCT). South African Journal of Science 101, 219–220.

    Google Scholar 

  • Olejniczak, A.J., Martin, L.B., Ulhaas, L.,2004. Quantification of dentine shape in anthropoid primates. Annals of Anatomy 186, 479–485.

    Article  Google Scholar 

  • Schwartz, G.T.,2000. Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. American Journal of Physical Anthropology 111, 221–244.

    Article  Google Scholar 

  • Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., Coppens, Y.,2001. First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de L’Academie Des Sciences Serie II Fascicule A- Sciences De La Terre Et Des Planetes 332, 137–144.

    Google Scholar 

  • Shellis, R.P., Beynon, A.D., Reid, D.J., Hiiemae, K.M.,1998. Variations in molar enamel thickness among primates. Journal of Human Evolution 35, 507–522.

    Article  Google Scholar 

  • Shimizu, D.,2002. Functional implications of enamel thickness in the lower molars of red colobus (Procolobus badius) and Japanese macaque (Macaca fuscata). Journal of Human Evolution 43, 605–620.

    Article  Google Scholar 

  • Simons, E.L.,1976. The nature of the transition in the dental mechanism from pongids to hominids. Journal of Human Evolution 5, 511–528.

    Article  Google Scholar 

  • Skinner, M.M., Kapadia, R.,2005. An evaluation of microCT for assessing in 3-D the concordance of dental trait expression between the dentin-enamel junction and the outer enamel surface of modern human molars. American Journal of Physical Anthropology Supplement, 126, 191–192.

    Google Scholar 

  • Smith, T.M., Olejniczak, A.J., Martin, L.B., Reid, D.J.,2005. Variation in hominoid molar enamel thickness. Journal of Human Evolution 48, 575–592.

    Article  Google Scholar 

  • Spoor, C.F., Zonneveld, F.W., Macho, G.A.,1993. Linear measurements of cortical bone and dental enamel by computed-tomography – applications and problems. American Journal of Physical Anthropology 91, 469–484.

    Article  Google Scholar 

  • Suwa, G., Kono, R.,2005. A micro-CT based study of linear enamel thickness in the mesial cusp section of human molars: reevaluation of methodology and assessment of within-tooth, serial, and individual variation. Anthropological Science 113, 273–289.

    Article  Google Scholar 

  • Ulhaas, L., Henke, W., Rothe, H.,1999. Variation in molar enamel thickness in genera Cercopithecus and Colobus. Anthropologie 37, 265–271.

    Google Scholar 

  • White, T.D., Suwa, G., Asfaw, B.,1994. Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371,306–312.

    Article  Google Scholar 

  • Yang, Z.,1991. Ultrasound surface imaging and the measurement of tooth enamel thickness. Ph.D. Dissertation, University of Manchester, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Olejniczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Olejniczak, A., Grine, F., Martin, L. (2007). Micro-computed tomography of primate molars: Methodological aspects of three-dimensional data collection. In: Bailey, S.E., Hublin, JJ. (eds) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5845-5_7

Download citation

Publish with us

Policies and ethics