Tooth wear and diversity in early hominid molars: A case study

  • L. Ulhaas
  • O. Kullmer
  • F. Schrenk
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Functional relationships between diet and tooth morphology form an integral part of paleontological research. The detailed description of occlusal relief and wear patterns of molars provides information about food ingestion and mastication. In early hominids overall molar morphology is fairly similar. Size measurements, such as buccolingual or mesiodistal diameter and 2-D cusp area of hominid molars show considerable overlap. The pioneering works of Butler, Mills, Hiiemae, Kay, Maier and others have shown that the wear pattern on the occlusal surface seems to reflect mastication behavior as an indication of diet. However, most of the interpretations are based on two-dimensional analyses. Occlusal relief measured in 3-D highlights functionally important features useful for quantifying the complex wear patterns on hominid teeth. However, until recently they could not be measured because techniques and methods were lacking. Nevertheless the results of 2-D analyses so far demonstrate that the occlusal surface of teeth records a significant part of the life history of an individual. The 3-D analysis of wear patterns on hominid teeth may provide additional information regarding the relationships between diet, chewing behavior and early hominid evolution. In this case study we employ a new 3-D approach to compare details on the occlusal surface of worn molars of Australopithecus afarensis, Australopithecus africanus and Paranthropus robustus in order to examine possible differences in tooth wear patterns. High resolution optical topometry enables us to measure parameters on 3-D computer models of teeth. Here, we compare various occlusal morphologies of worn lower second molars and attempt to interpret function, taking dental and masticatory principles into account. Our results indicate that diverse modes of occlusal wear in Australopithecus and Paranthropus are evident. A closer look at the occlusal relief and wear facet pattern shows that an assortment of mechanisms for crushing, shearing and grinding on a single tooth are common, since orientation and inclination of wear facets vary. The fact that A. afarensis molars show diverse functional areas with little variation among individuals suggests it had a dental toolkit to cope with a wide range of food qualities and may indicate a species-specific dietary spectrum. A. africanus and P. robustus molars, with their pronounced and relatively rapid flattening of crown relief and diverse individual wear patterns, point towards hard-object feeding and greater intraspecific variation in diet. P. robustus, however, with somewhat higher occlusal relief, can be interpreted as an omnivorous generalist with hard objects as fall-back foods.


hominids australopithecines molar morphology occlusal topography wear pattern wear facets 3-D analysis functional morphology tooth architecture dental occlusal compass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angle, E.H., 1900. Treatment of Malocclusion of the Teeth and Fractures of the Maxillae: Angle’s. 6th Ed. S.S. White Dental Manufacturing Co., Philiadelphia, pp. 37–40.Google Scholar
  2. Beraldin, J.A., Blais, F., Cournoyer, L., Godin, G., Rioux, M. (2000) Active 3D sensing. In: Modelli e Metodi per lo Studio e la Conservazione dell’Architettura Storica. Scuola Normale Superiore Pisa, Quaderni 10, 22–46.Google Scholar
  3. Brothwell, D.R., 1981. Digging up Bones, 2nd Ed. British Museum (Natural History) & Oxford University Press, London and Oxford.Google Scholar
  4. Butler, P.M., 1973. Molar wear facets of early tertiary North American Primates. In: Zingeser, M.R. (Ed.), Craniofacial Biology of Primates, Vol. 3 (Symposia of the Fourth International Congress of Primatology). Karger, Basel, pp. 127.Google Scholar
  5. Crompton, A.W., 1971. The origin of the tribosphenic molar. Zoological Journal of the Linnean Society Suppl. 50, 65–87.Google Scholar
  6. Crompton, A.W., Hiiemae, K.M., 1970. Functional occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zoology Journal of the Linnaeus Society 49, 21–47.CrossRefGoogle Scholar
  7. Dahl, B.L., Krogstad, B.S., Gaard, B., Eckers-Berg, T., 1989. Differences in functional variables, fillings, and tooth wear in two groups of 19-year-old individuals. Acta Odontologica Scandinavica 47, 35.CrossRefGoogle Scholar
  8. Dennis, J.C., Ungar, P.S., Teaford, M.F., Glander, K.E., 2004. Dental topography and molar wear in Alouatta palliata from Costa Rica. American Journal of Physical Anthropology 125, 152–161.CrossRefGoogle Scholar
  9. Douglass, G.D., DeVreugd, R.T., 1997. The dynamics of occlusal relationships. In: McNeill, C. (Ed.), Science and Practice of Occlusion, Quintessence Publishing Co, Inc., Illinois, pp. 69–78.Google Scholar
  10. Gingerich, P.D., 1972. Molar occlusion and jaw mechanics of the Eocene primate Adapis. American Journal of Physical Anthropology 36, 359–368.CrossRefGoogle Scholar
  11. Godin, G., Beraldin, J.A., Taylor, J., Cournoyer, L., Rioux, M., El-Hakim, S., Baribeau, R., Blais, F., Boulanger, P., Domey, J., Picard, M., 2002. Active Optical 3D Imaging for Heritage Applications. IEEE Computer Graphics Applications 22, 24–36.CrossRefGoogle Scholar
  12. Gordon, K.D., 1984. The assessment of jaw movement direction from dental microwear. American Journal of Physical Anthropology 63, 77–84.CrossRefGoogle Scholar
  13. Grine, F.E., 1981. Trophic differences between ‘gracile’ and ‘robust’ australopithecines: a scanning electron microscope analysis of occlusal events. South African Journal of Science 77, 203–230.Google Scholar
  14. Hiiemae, K.M., Crompton, A.W., 1971. A cinefluorographic study of feeding in the American opossum, Didelphis marsupialis. In: Dahlberg, A.A. (Ed.), Dental Morphology and Evolution. University of Chicago Press, Chicago, pp. 299–334.Google Scholar
  15. Hiiemae, K.M., Kay, R.F., 1972. Trends in the evolution of primate mastication. Nature 240, 486–487.CrossRefGoogle Scholar
  16. Hiiemae, K.M., Kay, R.F., 1973. Evolutionary trends in the dynamics of primate mastication. In: Symposium of the Fourth International Congress of Primatology, 3. Karger, Basel, pp. 28–64.Google Scholar
  17. Janis, C.M., 1984. Predictions of primate diets from molar wear pattern. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Publishing Corporation, New York, pp. 331–340.CrossRefGoogle Scholar
  18. Janis, C.M., 1990. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In: Boucot, A.J. (Ed.), Evolutionary Paleobiology of Behaviour and Coevolution. Elsevier Science Publishers B.V., Amsterdam, pp. 241–259.Google Scholar
  19. Jernvall, J., Selänne, L., 1999. Laser confocal microscopy and geographic information systems in the study of dental morphology. Paleontologica Electronica 2, 18 p, 905 KB.
  20. Kay, R.F., 1973. Mastication, molar tooth structure and diet in primates. Ph.D. Thesis, Yale University.Google Scholar
  21. Kay, R.F., 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology 43, 195–216.CrossRefGoogle Scholar
  22. Kay, R.F., 1977. The evolution of molar occlusion in the Cercopithecoidea and early catarrhines. American Journal of Physical Anthropology 46, 327–352.CrossRefGoogle Scholar
  23. Kay, R.F., 1978. Molar structure and diet in extant Cercopithecidae. In: Butler, P.M., Joysey, K.A. (Eds.), Development, Function, and Evolution of teeth. Academic Press, New York, pp. 309–339.Google Scholar
  24. Kay, R.F., 1981. The nut-crackers – a new theory of the adaptations of the Ramapithecinae. American Journal of Physical Anthropology 55, 141–151.CrossRefGoogle Scholar
  25. Kay, R.F., Covert, H.H., 1984. Anatomy and behaviour of extinct primates. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Press, New York, pp. 467–508.CrossRefGoogle Scholar
  26. Kay, R.F., Hiiemae, K.M., 1974. Mastication in Galago crassicaudatus, a cinefluorographic occlusal study. In: Martin, R.D., Doyle, G.A., Walker, A. (Eds.), Prosimian Biology. Duckworth, London, pp. 501–503.Google Scholar
  27. Kay, R.F., Hylander, W.L., 1978. The dental structure of mammalian folivores with special reference to primates and Phalangeroidea (Marsupialia). In: Montgomery, G.G. (Ed.), The Ecology of Arboreal Folivores. Smithonian Institute Press, Washington, pp. 173–191.Google Scholar
  28. Kim, S.K., Kim, K.N., Chang, I.T., Heo, S.J., 2001. A study of the effects of chewing patterns on occlusal wear. Journal of Oral Rehabilitation 28, 1048–1055.CrossRefGoogle Scholar
  29. Kullmer, O., Huck, M., Engel, K., Schrenk, F., Bromage, T., 2002a. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In: Mafart, B., Delingette, H. (Ed.), Three-dimensional Imaging in Paleoanthropology and Prehistoric Archaeology. Liege, Acts of the XIVth UISPP Congress, BAR International Series 1049, pp. 71–82.Google Scholar
  30. Kullmer, O., Engel, K., Schrenk, F., 2002b. Dreidimensionale Vermessungstechniken erweitern paläontologische Forschung – Virtuelle Zahnmodelle zur Analyse komplexer Zahnoberflächen. Natur und Museum 132, 225–256.Google Scholar
  31. Lahee, F.H., 1957. Field Geology. 6th Ed. McGraw Hill, New York.Google Scholar
  32. Maier, W., 1977a. Die bilophodonten Molaren der Indriidae (Primates) – ein evolutionsmorphologischer Modellfall. Zeitschrift Morphologie Anthropologie 68, 307–344.Google Scholar
  33. Maier, W., 1977b. Die evolution der bilophodonten Molaren der Cercopithecoidea. Eine funktionamorphologische Untersuchung. Zeitschrift Morphologie Anthropologie 68, 26–56.Google Scholar
  34. Maier, W., 1978. Zur Evolution des Säugetiergebisses – Typologische und konstruktionsmorphologische Erklärungen. Natur und Museum 108(10), 288–300.Google Scholar
  35. Maier, W., 1984. Tooth morphology and dietary specialization. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Press, New York, pp. 303–330.CrossRefGoogle Scholar
  36. Maier, W., Schneck, G., 1981. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Zeitschrift Morphologie Anthropologie 72, 127–169.Google Scholar
  37. Maier, W., Schneck, G., 1982. Functional morphology of hominoid dentitions. Journal of Human Evolution 11, 693–696.CrossRefGoogle Scholar
  38. Miles, A.E.W., 1963. Dentition in the estimation of age. Journal of Dental Research 42, 255–263.CrossRefGoogle Scholar
  39. M’Kirera, F., Ungar, P.S., 2003. Occlusal relief change with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. American Journal of Primatology 60, 31–41.CrossRefGoogle Scholar
  40. Reed, D.N.O., 1997. Contour mapping as a new method for interpreting diet from tooth morphology. American Journal of Physical Anthropology, Suppl. 24, 194.Google Scholar
  41. Reynolds, J.M., 1970. Occlusal wear facets. Journal of Prosthetic Dentistry 20, 367.CrossRefGoogle Scholar
  42. Robinson, J.T., 1954. Prehominid dentition and hominid evolution. Evolution 8, 324–334.CrossRefGoogle Scholar
  43. Robinson, J.T., 1956. The dentition of the Australopithecinae. Transvaal Museum Memoires 9, 1–179.Google Scholar
  44. Robinson, J.T., 1972. Early hominid posture and locomotion. University of Chicago Press, Chicago.Google Scholar
  45. Schulz, D., 2003. NAT – Die Naturgemäße Aufwachstechnik. Teil 1: Der anteriore Bereich. Teamwork Media GmbH, Fuchstal.Google Scholar
  46. Schulz, D., Winzen, O., 2004. Basiswissen zur Datenübertragung. Teamwork Media GmbH, Fuchstal.Google Scholar
  47. Scott, E.C., 1979. Dental wear scoring technique. American Journal of Physical Anthropology 51, 213–218.CrossRefGoogle Scholar
  48. Stones, H.H., 1948. Oral and Dental Diseases. Livingston, Edinburgh, p. 869.Google Scholar
  49. Strait, S.G., 1993a. Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution 25, 471–482.CrossRefGoogle Scholar
  50. Strait, S.G., 1993b. Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy 74(2), 391–402.CrossRefGoogle Scholar
  51. Sperber, G., 1973. Morphology of the cheek teeth of early South African hominids. Ph.D. Dissertation, Witwatersrand University Johannesburg.Google Scholar
  52. Teaford, M.F., 1982. Differences in molar wear gradient between juvenile macaques and langurs. American Journal of Physical Anthropology 57, 323–330.CrossRefGoogle Scholar
  53. Teaford, M.F., 1983. The morphology and wear of the lingual notch in macaques and langurs. American Journal of Physical Anthropology 60, 7–14.CrossRefGoogle Scholar
  54. Tobias, P.V., 1967. The Cranium and Maxillary dentition of Australopithecus (Zinjanthropus) boisei. Olduvai Gorge vol. 2. Cambridge University Press, London.Google Scholar
  55. Ulhaas, L., Kullmer, O., Schrenk, F., Henke, W., 2004. A new 3-d approach to determine functional morphology of cercopithecoid molars. Annals of Anatomy 186, 487–493.CrossRefGoogle Scholar
  56. Ungar, P.S., ‘M’Kirera, F., 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences of the USA 100, 3874–3877.CrossRefGoogle Scholar
  57. Ungar, P.S., Williamson, M., 2000. Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontologia Electronica. (3)1:
  58. Ungar, P.S., Dennis, J.C., Wilson, J., Grine, F., 2002. Quantification of tooth crown shape by dental topographic analysis. American Journal of Physical Anthropology Suppl. 34, 158–159.Google Scholar
  59. Wallace, J.A., 1972. The dentition of South African early hominids: a study of form and function. Ph.D. Dissertation, University of Witwatersrand, Johannesburg.Google Scholar
  60. Wallace, J.A., 1973. Tooth chipping in the australopithecines. Nature 244, 117–118.CrossRefGoogle Scholar
  61. Wallace, J.A., 1974. Approximal grooving of teeth. American Journal of Physical Anthropology 40, 285–390.CrossRefGoogle Scholar
  62. Wallace, J.A., 1975. Dietary adaptations of Australopithecus and early Homo. In: Tuttle, R. (Ed.), Paleoanthropology, Morphology and Paleoecology, Mouton, The Hague, pp. 203–223.Google Scholar
  63. Wallace, J.A., 1978. Evolutionary trends in the early hominid dentition. In: Jolly, C. (Ed.), Early Hominids of Africa. Duckworth, London, pp. 285–310.Google Scholar
  64. White, T.D., Johanson, D.C., Kimbel, W.H., 1981. Australopithecus africanus: its phyletic position reconsidered. South African Journal of Science 77, 445–470.Google Scholar
  65. Wolpoff, M.H., 1975. Some aspects of human mandibular evolution. In: McNamara, J.A. (Ed.), Determinants of Mandibular Form and Growth. Center of Human Growth and Development, Ann Arbor, pp. 1–64.Google Scholar
  66. Wolpoff, M.H., 1976. Primate models for australopithecine sexual dimorphism. American Journal of Physical Anthropology 45, 497–510.CrossRefGoogle Scholar
  67. Wood, B.A., 1993. Early Homo: How many species? In: Kimbel, W.H., Martin, L.B. (Eds.), Species, Species Concepts, and Primate Evolution. Plenum Press. New York, pp. 485–522.CrossRefGoogle Scholar
  68. Wood, B.A., Abbott, S.A., 1983. Analysis of the dental morphology of Plio-Pleistocene hominids. I. Mandibular molars: crown area measurements and morphological traits. Journal of Anatomy 136, 197–219.Google Scholar
  69. Wood, B.A., Strait, D., 2004. Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution 46, 119–162.CrossRefGoogle Scholar
  70. Zuccotti, L.F., Williamson, M.D., Limp, W.F., Ungar, P.S., 1998. Modeling primate occlusal topography using geographic information systems technology. American Journal of Physical Anthropology 107, 137–142.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Paleoanthropology and Quaternary PaleontologyResearch Institute SenckenbergFrankfurt am MainGermany
  2. 2.Department of Paleoanthropology and Quaternary PaleontologyResearch Institute SenckenbergFrankfurt am MainGermany
  3. 3.Vertebrate Paleobiology Institut for Ecology, Evolution & DiversityJWG University FrankfurtFrankfurt am MainGermany

Personalised recommendations