Skip to main content

Tooth wear and diversity in early hominid molars: A case study

  • Chapter

Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Functional relationships between diet and tooth morphology form an integral part of paleontological research. The detailed description of occlusal relief and wear patterns of molars provides information about food ingestion and mastication. In early hominids overall molar morphology is fairly similar. Size measurements, such as buccolingual or mesiodistal diameter and 2-D cusp area of hominid molars show considerable overlap. The pioneering works of Butler, Mills, Hiiemae, Kay, Maier and others have shown that the wear pattern on the occlusal surface seems to reflect mastication behavior as an indication of diet. However, most of the interpretations are based on two-dimensional analyses. Occlusal relief measured in 3-D highlights functionally important features useful for quantifying the complex wear patterns on hominid teeth. However, until recently they could not be measured because techniques and methods were lacking. Nevertheless the results of 2-D analyses so far demonstrate that the occlusal surface of teeth records a significant part of the life history of an individual. The 3-D analysis of wear patterns on hominid teeth may provide additional information regarding the relationships between diet, chewing behavior and early hominid evolution. In this case study we employ a new 3-D approach to compare details on the occlusal surface of worn molars of Australopithecus afarensis, Australopithecus africanus and Paranthropus robustus in order to examine possible differences in tooth wear patterns. High resolution optical topometry enables us to measure parameters on 3-D computer models of teeth. Here, we compare various occlusal morphologies of worn lower second molars and attempt to interpret function, taking dental and masticatory principles into account. Our results indicate that diverse modes of occlusal wear in Australopithecus and Paranthropus are evident. A closer look at the occlusal relief and wear facet pattern shows that an assortment of mechanisms for crushing, shearing and grinding on a single tooth are common, since orientation and inclination of wear facets vary. The fact that A. afarensis molars show diverse functional areas with little variation among individuals suggests it had a dental toolkit to cope with a wide range of food qualities and may indicate a species-specific dietary spectrum. A. africanus and P. robustus molars, with their pronounced and relatively rapid flattening of crown relief and diverse individual wear patterns, point towards hard-object feeding and greater intraspecific variation in diet. P. robustus, however, with somewhat higher occlusal relief, can be interpreted as an omnivorous generalist with hard objects as fall-back foods.

Keywords

  • hominids
  • australopithecines
  • molar morphology
  • occlusal topography
  • wear pattern
  • wear facets
  • 3-D analysis
  • functional morphology
  • tooth architecture
  • dental occlusal compass

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angle, E.H., 1900. Treatment of Malocclusion of the Teeth and Fractures of the Maxillae: Angle’s. 6th Ed. S.S. White Dental Manufacturing Co., Philiadelphia, pp. 37–40.

    Google Scholar 

  • Beraldin, J.A., Blais, F., Cournoyer, L., Godin, G., Rioux, M. (2000) Active 3D sensing. In: Modelli e Metodi per lo Studio e la Conservazione dell’Architettura Storica. Scuola Normale Superiore Pisa, Quaderni 10, 22–46.

    Google Scholar 

  • Brothwell, D.R., 1981. Digging up Bones, 2nd Ed. British Museum (Natural History) & Oxford University Press, London and Oxford.

    Google Scholar 

  • Butler, P.M., 1973. Molar wear facets of early tertiary North American Primates. In: Zingeser, M.R. (Ed.), Craniofacial Biology of Primates, Vol. 3 (Symposia of the Fourth International Congress of Primatology). Karger, Basel, pp. 127.

    Google Scholar 

  • Crompton, A.W., 1971. The origin of the tribosphenic molar. Zoological Journal of the Linnean Society Suppl. 50, 65–87.

    Google Scholar 

  • Crompton, A.W., Hiiemae, K.M., 1970. Functional occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zoology Journal of the Linnaeus Society 49, 21–47.

    CrossRef  Google Scholar 

  • Dahl, B.L., Krogstad, B.S., Gaard, B., Eckers-Berg, T., 1989. Differences in functional variables, fillings, and tooth wear in two groups of 19-year-old individuals. Acta Odontologica Scandinavica 47, 35.

    CrossRef  Google Scholar 

  • Dennis, J.C., Ungar, P.S., Teaford, M.F., Glander, K.E., 2004. Dental topography and molar wear in Alouatta palliata from Costa Rica. American Journal of Physical Anthropology 125, 152–161.

    CrossRef  Google Scholar 

  • Douglass, G.D., DeVreugd, R.T., 1997. The dynamics of occlusal relationships. In: McNeill, C. (Ed.), Science and Practice of Occlusion, Quintessence Publishing Co, Inc., Illinois, pp. 69–78.

    Google Scholar 

  • Gingerich, P.D., 1972. Molar occlusion and jaw mechanics of the Eocene primate Adapis. American Journal of Physical Anthropology 36, 359–368.

    CrossRef  Google Scholar 

  • Godin, G., Beraldin, J.A., Taylor, J., Cournoyer, L., Rioux, M., El-Hakim, S., Baribeau, R., Blais, F., Boulanger, P., Domey, J., Picard, M., 2002. Active Optical 3D Imaging for Heritage Applications. IEEE Computer Graphics Applications 22, 24–36.

    CrossRef  Google Scholar 

  • Gordon, K.D., 1984. The assessment of jaw movement direction from dental microwear. American Journal of Physical Anthropology 63, 77–84.

    CrossRef  Google Scholar 

  • Grine, F.E., 1981. Trophic differences between ‘gracile’ and ‘robust’ australopithecines: a scanning electron microscope analysis of occlusal events. South African Journal of Science 77, 203–230.

    Google Scholar 

  • Hiiemae, K.M., Crompton, A.W., 1971. A cinefluorographic study of feeding in the American opossum, Didelphis marsupialis. In: Dahlberg, A.A. (Ed.), Dental Morphology and Evolution. University of Chicago Press, Chicago, pp. 299–334.

    Google Scholar 

  • Hiiemae, K.M., Kay, R.F., 1972. Trends in the evolution of primate mastication. Nature 240, 486–487.

    CrossRef  Google Scholar 

  • Hiiemae, K.M., Kay, R.F., 1973. Evolutionary trends in the dynamics of primate mastication. In: Symposium of the Fourth International Congress of Primatology, 3. Karger, Basel, pp. 28–64.

    Google Scholar 

  • Janis, C.M., 1984. Predictions of primate diets from molar wear pattern. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Publishing Corporation, New York, pp. 331–340.

    CrossRef  Google Scholar 

  • Janis, C.M., 1990. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In: Boucot, A.J. (Ed.), Evolutionary Paleobiology of Behaviour and Coevolution. Elsevier Science Publishers B.V., Amsterdam, pp. 241–259.

    Google Scholar 

  • Jernvall, J., Selänne, L., 1999. Laser confocal microscopy and geographic information systems in the study of dental morphology. Paleontologica Electronica 2, 18 p, 905 KB. http://www-odp.tamu.edu/paleo/1999_1/confocal/issue1_99.htm.

  • Kay, R.F., 1973. Mastication, molar tooth structure and diet in primates. Ph.D. Thesis, Yale University.

    Google Scholar 

  • Kay, R.F., 1975. The functional adaptations of primate molar teeth. American Journal of Physical Anthropology 43, 195–216.

    CrossRef  Google Scholar 

  • Kay, R.F., 1977. The evolution of molar occlusion in the Cercopithecoidea and early catarrhines. American Journal of Physical Anthropology 46, 327–352.

    CrossRef  Google Scholar 

  • Kay, R.F., 1978. Molar structure and diet in extant Cercopithecidae. In: Butler, P.M., Joysey, K.A. (Eds.), Development, Function, and Evolution of teeth. Academic Press, New York, pp. 309–339.

    Google Scholar 

  • Kay, R.F., 1981. The nut-crackers – a new theory of the adaptations of the Ramapithecinae. American Journal of Physical Anthropology 55, 141–151.

    CrossRef  Google Scholar 

  • Kay, R.F., Covert, H.H., 1984. Anatomy and behaviour of extinct primates. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Press, New York, pp. 467–508.

    CrossRef  Google Scholar 

  • Kay, R.F., Hiiemae, K.M., 1974. Mastication in Galago crassicaudatus, a cinefluorographic occlusal study. In: Martin, R.D., Doyle, G.A., Walker, A. (Eds.), Prosimian Biology. Duckworth, London, pp. 501–503.

    Google Scholar 

  • Kay, R.F., Hylander, W.L., 1978. The dental structure of mammalian folivores with special reference to primates and Phalangeroidea (Marsupialia). In: Montgomery, G.G. (Ed.), The Ecology of Arboreal Folivores. Smithonian Institute Press, Washington, pp. 173–191.

    Google Scholar 

  • Kim, S.K., Kim, K.N., Chang, I.T., Heo, S.J., 2001. A study of the effects of chewing patterns on occlusal wear. Journal of Oral Rehabilitation 28, 1048–1055.

    CrossRef  Google Scholar 

  • Kullmer, O., Huck, M., Engel, K., Schrenk, F., Bromage, T., 2002a. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In: Mafart, B., Delingette, H. (Ed.), Three-dimensional Imaging in Paleoanthropology and Prehistoric Archaeology. Liege, Acts of the XIVth UISPP Congress, BAR International Series 1049, pp. 71–82.

    Google Scholar 

  • Kullmer, O., Engel, K., Schrenk, F., 2002b. Dreidimensionale Vermessungstechniken erweitern paläontologische Forschung – Virtuelle Zahnmodelle zur Analyse komplexer Zahnoberflächen. Natur und Museum 132, 225–256.

    Google Scholar 

  • Lahee, F.H., 1957. Field Geology. 6th Ed. McGraw Hill, New York.

    Google Scholar 

  • Maier, W., 1977a. Die bilophodonten Molaren der Indriidae (Primates) – ein evolutionsmorphologischer Modellfall. Zeitschrift Morphologie Anthropologie 68, 307–344.

    Google Scholar 

  • Maier, W., 1977b. Die evolution der bilophodonten Molaren der Cercopithecoidea. Eine funktionamorphologische Untersuchung. Zeitschrift Morphologie Anthropologie 68, 26–56.

    Google Scholar 

  • Maier, W., 1978. Zur Evolution des Säugetiergebisses – Typologische und konstruktionsmorphologische Erklärungen. Natur und Museum 108(10), 288–300.

    Google Scholar 

  • Maier, W., 1984. Tooth morphology and dietary specialization. In: Chivers, D.J., Wood, B.A., Bilsborough, A. (Eds.), Food Acquisition and Processing in Primates. Plenum Press, New York, pp. 303–330.

    CrossRef  Google Scholar 

  • Maier, W., Schneck, G., 1981. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Zeitschrift Morphologie Anthropologie 72, 127–169.

    Google Scholar 

  • Maier, W., Schneck, G., 1982. Functional morphology of hominoid dentitions. Journal of Human Evolution 11, 693–696.

    CrossRef  Google Scholar 

  • Miles, A.E.W., 1963. Dentition in the estimation of age. Journal of Dental Research 42, 255–263.

    CrossRef  Google Scholar 

  • M’Kirera, F., Ungar, P.S., 2003. Occlusal relief change with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. American Journal of Primatology 60, 31–41.

    CrossRef  Google Scholar 

  • Reed, D.N.O., 1997. Contour mapping as a new method for interpreting diet from tooth morphology. American Journal of Physical Anthropology, Suppl. 24, 194.

    Google Scholar 

  • Reynolds, J.M., 1970. Occlusal wear facets. Journal of Prosthetic Dentistry 20, 367.

    CrossRef  Google Scholar 

  • Robinson, J.T., 1954. Prehominid dentition and hominid evolution. Evolution 8, 324–334.

    CrossRef  Google Scholar 

  • Robinson, J.T., 1956. The dentition of the Australopithecinae. Transvaal Museum Memoires 9, 1–179.

    Google Scholar 

  • Robinson, J.T., 1972. Early hominid posture and locomotion. University of Chicago Press, Chicago.

    Google Scholar 

  • Schulz, D., 2003. NAT – Die Naturgemäße Aufwachstechnik. Teil 1: Der anteriore Bereich. Teamwork Media GmbH, Fuchstal.

    Google Scholar 

  • Schulz, D., Winzen, O., 2004. Basiswissen zur Datenübertragung. Teamwork Media GmbH, Fuchstal.

    Google Scholar 

  • Scott, E.C., 1979. Dental wear scoring technique. American Journal of Physical Anthropology 51, 213–218.

    CrossRef  Google Scholar 

  • Stones, H.H., 1948. Oral and Dental Diseases. Livingston, Edinburgh, p. 869.

    Google Scholar 

  • Strait, S.G., 1993a. Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution 25, 471–482.

    CrossRef  Google Scholar 

  • Strait, S.G., 1993b. Molar morphology and food texture among small-bodied insectivorous mammals. Journal of Mammalogy 74(2), 391–402.

    CrossRef  Google Scholar 

  • Sperber, G., 1973. Morphology of the cheek teeth of early South African hominids. Ph.D. Dissertation, Witwatersrand University Johannesburg.

    Google Scholar 

  • Teaford, M.F., 1982. Differences in molar wear gradient between juvenile macaques and langurs. American Journal of Physical Anthropology 57, 323–330.

    CrossRef  Google Scholar 

  • Teaford, M.F., 1983. The morphology and wear of the lingual notch in macaques and langurs. American Journal of Physical Anthropology 60, 7–14.

    CrossRef  Google Scholar 

  • Tobias, P.V., 1967. The Cranium and Maxillary dentition of Australopithecus (Zinjanthropus) boisei. Olduvai Gorge vol. 2. Cambridge University Press, London.

    Google Scholar 

  • Ulhaas, L., Kullmer, O., Schrenk, F., Henke, W., 2004. A new 3-d approach to determine functional morphology of cercopithecoid molars. Annals of Anatomy 186, 487–493.

    CrossRef  Google Scholar 

  • Ungar, P.S., ‘M’Kirera, F., 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Sciences of the USA 100, 3874–3877.

    CrossRef  Google Scholar 

  • Ungar, P.S., Williamson, M., 2000. Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeontologia Electronica. (3)1: http://www-odp.tamu.edu/paleo/2000_1/gorilla/main.htm.

  • Ungar, P.S., Dennis, J.C., Wilson, J., Grine, F., 2002. Quantification of tooth crown shape by dental topographic analysis. American Journal of Physical Anthropology Suppl. 34, 158–159.

    Google Scholar 

  • Wallace, J.A., 1972. The dentition of South African early hominids: a study of form and function. Ph.D. Dissertation, University of Witwatersrand, Johannesburg.

    Google Scholar 

  • Wallace, J.A., 1973. Tooth chipping in the australopithecines. Nature 244, 117–118.

    CrossRef  Google Scholar 

  • Wallace, J.A., 1974. Approximal grooving of teeth. American Journal of Physical Anthropology 40, 285–390.

    CrossRef  Google Scholar 

  • Wallace, J.A., 1975. Dietary adaptations of Australopithecus and early Homo. In: Tuttle, R. (Ed.), Paleoanthropology, Morphology and Paleoecology, Mouton, The Hague, pp. 203–223.

    Google Scholar 

  • Wallace, J.A., 1978. Evolutionary trends in the early hominid dentition. In: Jolly, C. (Ed.), Early Hominids of Africa. Duckworth, London, pp. 285–310.

    Google Scholar 

  • White, T.D., Johanson, D.C., Kimbel, W.H., 1981. Australopithecus africanus: its phyletic position reconsidered. South African Journal of Science 77, 445–470.

    Google Scholar 

  • Wolpoff, M.H., 1975. Some aspects of human mandibular evolution. In: McNamara, J.A. (Ed.), Determinants of Mandibular Form and Growth. Center of Human Growth and Development, Ann Arbor, pp. 1–64.

    Google Scholar 

  • Wolpoff, M.H., 1976. Primate models for australopithecine sexual dimorphism. American Journal of Physical Anthropology 45, 497–510.

    CrossRef  Google Scholar 

  • Wood, B.A., 1993. Early Homo: How many species? In: Kimbel, W.H., Martin, L.B. (Eds.), Species, Species Concepts, and Primate Evolution. Plenum Press. New York, pp. 485–522.

    CrossRef  Google Scholar 

  • Wood, B.A., Abbott, S.A., 1983. Analysis of the dental morphology of Plio-Pleistocene hominids. I. Mandibular molars: crown area measurements and morphological traits. Journal of Anatomy 136, 197–219.

    Google Scholar 

  • Wood, B.A., Strait, D., 2004. Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution 46, 119–162.

    CrossRef  Google Scholar 

  • Zuccotti, L.F., Williamson, M.D., Limp, W.F., Ungar, P.S., 1998. Modeling primate occlusal topography using geographic information systems technology. American Journal of Physical Anthropology 107, 137–142.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ulhaas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ulhaas, L., Kullmer, O., Schrenk, F. (2007). Tooth wear and diversity in early hominid molars: A case study. In: Bailey, S.E., Hublin, JJ. (eds) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5845-5_24

Download citation

Publish with us

Policies and ethics