Skip to main content

An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth

  • Chapter

Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Analysis of human tooth enamel using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides a basis for systematic evaluation of variation in the chemical composition of enamel in relation to tooth crown geometry. Analysis of thin sections allows a sampling strategy that can be cross-referenced to incremental growth structures in tooth enamel. Strontium and calcium are incorporated into developing teeth in a manner that reflects changing physiological concentrations in the body. Strontium/calcium (Sr/Ca) ratios are expected to decease at birth in breastfed infants, because the mammary gland exerts a greater activating effect on calcium transfer than the placenta. However, Sr/Ca ratios should increase at birth in infants fed on a formula derived from cow’s milk. Changes in Sr/Ca ratios across the neonatal line in five out of six deciduous teeth from children of known mode of feeding within the first few months after birth conform to the predicted direction of change, indicating that changes in physiological concentrations of strontium and calcium resulting from a dietary shift during the secretory stage of enamel formation may not be completely overwhelmed during enamel maturation. Implications for the reconstruction of longitudinal records of infant diet from tooth enamel are discussed.

Keywords

  • enamel
  • trace element
  • intra-tooth analysis
  • strontium
  • calcium
  • neonatal line
  • birth
  • dietary reconstruction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.R., 1993. Longitudinal changes of trace-elements inhuman milk during the 1st 5 months of lactation. Nutrition Research1 3, 499–510.

    CrossRef  Google Scholar 

  • Aoba, T., 1996. Recent observations on enamel crystal formationduring mammalian amelogenesis. Anatomical Record 225, 208–218.

    CrossRef  Google Scholar 

  • Balasse, M., 2003. Potential biases in sampling design andinterpretation of intra-tooth analysis. International Journal ofOsteoarchaeology 13, 3–10.

    CrossRef  Google Scholar 

  • Balasse, M., Bocherens, H., Mariotti, A., Ambrose, S.H., 2001. Detection of dietary changes by intra-tooth carbon and nitrogenisotopic analysis: an experimental study of dentine collagen ofcattle (Bos taurus). Journal of Archaeological Science 28, 235–245.

    CrossRef  Google Scholar 

  • Boyde, A., 1989. Enamel. In: Oksche, A., Vollrath, L. (Eds.), Handbook of Microscopic Anatomy, Vol. 6: Teeth. Springer, Berlin,pp. 309–473.

    Google Scholar 

  • Boyde, A., 1997. Microstructure of enamel. In: Chadwick, D.J.,Cardew, G. (Eds.), Dental enamel. Proceedings of the CibaFoundation Symposium 205. John Wiley, Chichester, pp. 18–31.

    Google Scholar 

  • Budd, P., Montgomery, J., Barreiro, B., Thomas, R.G., 2000. Differential diagenesis of strontium in archaeological humandental tissues. Applied Geochemistry 15, 687–694.

    CrossRef  Google Scholar 

  • Comar, C.L., 1963. Some over-all aspects of strontium-calciumdiscrimination. In: Wasserman, R.H. (Ed.), The Transfer of Calciumand Strontium Across Biological Membranes. Academic Press, NewYork, pp. 405–419.

    CrossRef  Google Scholar 

  • Crabb, H.S.M., Darling, A.I., 1962. The Pattern of ProgressiveMineralization in Human Dental Enamel. Pergamon Press, Oxford.

    Google Scholar 

  • Dean, C., Leakey, M.G., Reid, D., Schrenk, F., Schwartz, G.T.,Stringer, C., Walker, A., 2001. Growth processes in teethdistinguish modern humans from Homo erectus and earlierhominins. Nature 414, 628–631.

    CrossRef  Google Scholar 

  • Dean, M.C., 1987. Growth layers and incremental markings in hardtissues: a review of the literature and some preliminaryobservations about enamel structure in Paranthropus boisei. Journal of Human Evolution 16, 157–172.

    CrossRef  Google Scholar 

  • Du, C., Falini, G., Fermani, S., Abbott, C., Moradian-Oldak, J.,2005. Supramolecular assembly of amelogenin nanospheres intobirefringent microribbons. Science 307, 1450—1454.

    CrossRef  Google Scholar 

  • Eisenmann, D.R., 1989. Amelogenesis. In: Ten Cate, A.R. (Ed.), OralHistology: Development, Structure and Function. Third edition. TheC.V. Mosby Company, St. Louis, pp. 197–213.

    Google Scholar 

  • Fincham, A.G., Simmer, J.P., 1997. Amelogenin proteins ofdeveloping dental enamel. In: Chadwick, D.J., Cardew, G. (Eds.), Dental enamel. Proceedings of the Ciba Foundation Symposium 205. John Wiley and Sons Inc, Chichester, pp. 118–134.

    Google Scholar 

  • Fincham, A.G., Moradian-Oldak, J., Simmer, J.P., 1999. Thestructural biology of developing dental enamel matrix. Journal ofStructural Biology 126, 270–299.

    CrossRef  Google Scholar 

  • Fuller, B.T., Richards, M.P., Mays, S.A., 2003. Stable carbon andnitrogen isotope variations in tooth dentine serial sections fromWharram Percy. Journal of Archaeological Science 30, 1673–1684.

    CrossRef  Google Scholar 

  • Glick, P.L., 1979. Patterns of enamel maturation. Journal ofDental Research. Special Issue B. 58, 883–892.

    Google Scholar 

  • Hillson, S., 1996. Dental Anthropology. Cambridge UniversityPress, Cambridge.

    CrossRef  Google Scholar 

  • Hoppe, K.A., Stover, S.M., Pascoe, J.R., Amundson, R., 2004. Toothenamel biomineralization in extant horses: implications forisotopic microsampling. Paleogeography, Paleoclimatology, Paleoecology 206, 355–365.

    CrossRef  Google Scholar 

  • Hühne-Osterloh, G., Grupe, G., 1989. Causes of infantmortality in the middle ages revealed by chemical andpalaeopathological analyses of skeletal remains. Zeitschrift für Morphologie and Anthropologie. 77, 247–258.

    Google Scholar 

  • Jeffries, T.E., 2004. Laser ablation inductively coupled plasma massspectrometry. In: Janssens, K., Van Grieken, R. (Eds.), Wilson andWilson’s Comprehensive Analytical Chemistry, Vol. XLII:Non-destructive Microanalysis of Cultural Heritage Materials.Elsevier, Amsterdam, pp. 313–358.

    Google Scholar 

  • Jeffries, T.E., Jackson, S.E., Longerich, H.P., 1998. Applicationof a frequency quintupled Nd: YAG source (λ = 213 nm) forlaser ablation inductively coupled plasma mass spectrometricanalysis of minerals. Journal of Analytical Atomic Spectrometry 13, 935–940.

    CrossRef  Google Scholar 

  • Kang, D., Amarasiriwardena, D., Goodman, A.H., 2004. Applicationof laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) to investigate trace metal spatial distributions inhuman tooth enamel and dentine growth layers and pulp. Analyticaland Bioanalytical Chemistry 378, 1608–1615.

    CrossRef  Google Scholar 

  • Kerebel, B., Daculsi, G., Kerebel, L.M., 1979. Ultrastructuralstudies of enamel crystallites. Journal of Dental Research 58, 844–850.

    CrossRef  Google Scholar 

  • Koch, P.L., Tuross, N., Fogel, M.L., 1997. The effects of sampletreatment and diagenesis on the isotopic integrity of carbonate inbiogenic hydroxylapatite. Journal of Archaeological Science 24, 417–429.

    CrossRef  Google Scholar 

  • Krachler, M., Rossipal, E., Micetic-Turk, D., 1999. Trace elementtransfer from the mother to the newborn – investigations ontriplets of colostrum, maternal and umbilical cord sera. EuropeanJournal of Clinical Nutrition 53, 486–494.

    CrossRef  Google Scholar 

  • Lee-Thorpe, J.A., van der Merwe, N.J., 1991. Aspects of thechemistry of modern and fossil biological apatites. Journal ofArchaeological Science 18, 343–35.

    CrossRef  Google Scholar 

  • Lough, S.A., Rivera, J., Comar, C.L., 1963. Retention ofstrontium, calcium and phosphorus in human infants. Proceedings of theSociety of Experimental Biology and Medicine 112, 631–636.

    CrossRef  Google Scholar 

  • Mays, S., 2003. Bone strontium: calcium ratios and duration ofbreastfeeding in a Mediaeval skeletal population. Journal ofArchaeological Science 30, 731–741.

    CrossRef  Google Scholar 

  • McClellan, R.O., 1964. Radiobiology: calcium-strontiumdiscrimination in miniature pigs as related to age. Nature 202, 104–106.

    CrossRef  Google Scholar 

  • Passey, B.H., Cerling, T.E., 2002. Tooth enamel mineralization inungulates: implications for recovering a primary isotopictime-series. Geochimica et Cosmochimica Acta 66, 3225–3234.

    CrossRef  Google Scholar 

  • Perrone, L., Dipalma, L., Ditoro, R., Gialanella, G., Moro, R.,1993. Trace-element content of human-milk during lactation. Journal of Trace Element Electrolytes in Health and Disease 7, 245–247.

    Google Scholar 

  • Perrone, L., Dipalma, L., Ditoro, R., Gialanella, G., Moro, R.,1994. Interaction of trace-elements in a longitudinal-study ofhuman-milk from full-term and preterm mothers. Biological TraceElement Research 41, 321–330.

    CrossRef  Google Scholar 

  • Rivera, J., Harley, J.H., 1965. The HASL bone program: 1961–1964.U.S. Atomic Energy Commission Health and Safety Lab Report, 163.

    Google Scholar 

  • Robinson, C., Kirkham, J., Weatherell, J.A., Strong, M., 1986. Dental Enamel – A Living Fossil. BAR International Series 291, 31–55.

    Google Scholar 

  • Robinson, C., Brookes, S.J., Bonass, W.A., Shore, R.C., Kirkham, J.,1997. Enamel maturation. In: Chadwick, D.J., Cardew, G. (Eds.), Dental enamel. Proceedings of the Ciba Foundation Symposium 205. John Wiley and Sons Inc., Chichester, pp. 118–134.

    Google Scholar 

  • Rosser, H., Boyde, A., Stewart, A.D.G., 1967. Preliminaryobservations of the calcium concentration in developing enamelassessed by scanning electron-probe X-ray emission microanalysis. Archives of Oral Biology 12, 431–440.

    CrossRef  Google Scholar 

  • Rossipal, E., 2000. Investigation on the transport of traceelements across barriers in humans: Studies of placental andmammary transfer. Journal of Trace and Microprobe Techniques 18, 493–497.

    Google Scholar 

  • Rossipal, E., Krachler, M., 1998. Pattern of trace elements inhuman milk during the course of lactation. Nutrition Research 18, 11–24.

    CrossRef  Google Scholar 

  • Schour, I., 1936. Neonatal line in enamel and dentin of humandeciduous teeth and first permanent molar. Journal of the AmericanDental Association 23, 1946–1955.

    Google Scholar 

  • Schour, I., Poncher, H.G., 1937. Rate of apposition of enamel anddentine, measured by the effect of acute fluorosis. AmericanJournal of Diseases of Children 54, 757–776.

    Google Scholar 

  • Sealy, J., Armstrong, R., Schrire, C., 1995. Beyond lifetimeaverages: tracing life histories through isotopic analysis ofdifferent calcified tissues from archaeological human skeletons. Antiquity 69, 290–300.

    Google Scholar 

  • Sillen, A., Smith, P., 1984. Weaning patterns are reflected instrontium-calcium ratios of juvenile skeletons. Journal ofArchaeological Science 11, 237–245.

    CrossRef  Google Scholar 

  • Simmer, J.P., Hu, J.C.C., 2002. Expression, structure, andfunction of enamel proteinases. Connective Tissue Research 43, 441–449.

    CrossRef  Google Scholar 

  • Skinner, M., Dupras, T., 1993. Variation in birth timing andlocation of the neonatal line in human enamel. Journal of ForensicSciences 38, 1383–1390.

    Google Scholar 

  • Smith, C.E., 1998. Cellular and chemical events during enamelmaturation. Critical Reviews in Oral Biology and Medicine 9, 128–161.

    CrossRef  Google Scholar 

  • Smith, P., Avishai, G., 2005. The use of dental criteria forestimating postnatal survival in skeletal remains of infants. Journal of Archaeological Science 32, 83–89.

    CrossRef  Google Scholar 

  • Suga, S., 1982. Progressive mineralization pattern of developingenamel during the maturation stage. Journal of Dental Research 61, 1532–1542.

    Google Scholar 

  • Suga, S., 1989. Enamel hypomineralization viewed from the patternof progressive mineralization of human and monkey developingenamel. Advances in Dental Research 3, 188–198.

    Google Scholar 

  • Sugihira, N., Suzuki, K.T., 1991. Discrimination between strontiumand calcium in suckling rats. Biological Trace Element Research 29, 1–10.

    CrossRef  Google Scholar 

  • Von Zallinger, C., Tempel, K., 1998. Transplacental transfer ofradionuclides. A review. Journal of Veterinary Medical Science,Series A Physiology Pathology Clinical Medicine 45, 581–590.

    CrossRef  Google Scholar 

  • Wasserman, R.H., 1963. The Transfer of Calcium and StrontiumAcross Biological Membranes. Academic Press, New York.

    Google Scholar 

  • Webb, E., Amarasiriwardena, D., Tauch, S., Green, E.F., Jones, J.,Goodman, A.H., 2005. Inductively coupled plasma-mass (ICP-MS) andatomic emission spectrometry (ICP-AES): Versatile analyticaltechniques to identify the archived elemental information in humanteeth. Microchemical Journal 81, 201–208.

    CrossRef  Google Scholar 

  • Whittaker, D.K., Richard, D., 1978. Scanning electron microscopyof the neonatal line in human enamel. Archives of Oral Biology 23, 45–50.

    CrossRef  Google Scholar 

  • Wilson, P.R., Beynon, A.D., 1989. Mineralization differencesbetween human deciduous and permanent enamel measured byquantitative microradiography. Archives of Oral Biology 34, 85–88.

    CrossRef  Google Scholar 

  • Wilson, P.R., Beynon, A.D., 1990. Mineralization levels inpre-and post natal human deciduous molar enamel. Journal ofPaedeatric Dentistry 6, 35–39.

    Google Scholar 

  • Wong, F.S.L., Anderson, P., Fan, H., Davis, G.R., 2004. X-raymicrotomographic study of mineral concentration distribution indeciduous enamel. Archives of Oral Biology 49, 937–944.

    CrossRef  Google Scholar 

  • Wright, L.E., Schwarcz, H.P., 1998. Stable carbon and oxygenisotopes in human tooth enamel: identifyingbreastfeeding and weaning in prehistory. American Journal ofPhysical Anthropology 106, 1–18.

    CrossRef  Google Scholar 

  • Wurster, C.M., Patterson, W.P., Cheatham, M.M., 1999. Advances inmicromilling techniques: a new apparatus for acquiringhigh-resolution oxygen and carbon stable isotope values andmajor/minor elemental ratios from accretionary carbonate. Computational Geosciences 25, 1159–1166.

    CrossRef  Google Scholar 

  • Zazzo, A., Balasse, M., Patterson, W.P., Patterson, P., 2005. High-resolution delta C-13 intratooth profiles in bovine enamel:Implications for mineralization pattern and isotopic attenuation. Geochimica et Cosmochimica Acta 69, 3631–3642.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.T. Humphrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Humphrey, L., Dean, M., Jeffries, T. (2007). An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth. In: Bailey, S.E., Hublin, JJ. (eds) Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5845-5_21

Download citation

Publish with us

Policies and ethics