Advertisement

The Role of the Leaf Apoplast in Manganese Toxicity and Tolerance in Cowpea (Vigna Unguiculata L. Walp)

  • M.M. Fecht-Christoffers
  • P. Maier
  • K. Iwasaki
  • H.P. Braun
  • W.J. Horst

Abstract

First visible Mn toxicity symptoms are brown spots on older leaves, followed by chlorosis, necrosis and leaf shedding. The brown spots represent local accumulations of oxidized Mn (MnIV) and oxidized phenols in the cell wall, especially of the epidermis. Differences in Mn resistance between cv TVu 91 (Mn-sensitive) and cv TVu 1987 (Mntolerant) are due to higher Mn tissue tolerance. The physiological mechanism of Mn toxicity and Mn tolerance are still poorly understood. The apoplast was proposed to be the most important compartment for development of Mn toxicity and Mn tolerance.

The detailed analysis and characterization of the proteome of the leaf apoplast confirm the particular role of PODs in the expression of Mn toxicity mediating H2O2 production/consumption and the oxidation of phenols in the leaf apoplast. The observed Mninduced release of pathogenesis-related like proteins (PR-like) is attributed to a general stress response. Since PR-like proteins are induced by various other abiotic and biotic stresses, a specific physiological role of these proteins in response to excess Mn supply remains to be established. From the apoplastic metabolites, particular the composition of phenolic compounds seemed to be crucial for the development and avoidance of Mn toxicity. Phenolic compounds affect POD activities causing a stimulation or inhibition of PODs in the apoplast. Furthermore, sequestration of Mn by phenolic compounds and thus rendering Mn physiologically inactive might enhance Mn tolerance. The analysis of the release of organic acids into the apoplast and translocation of Mn into the vacuoles did not support the hypothesis, that sequestration of Mn by organic acids in the apoplast and the vacuoles is crucial for Mn tolerance. Silicon alleviated Mn toxicity symptoms not only by a decrease of the apoplastic Mn concentration and an increased adsorption of Mn to the cell walls but also by the soluble Si in the apoplast. Although the antioxidant ascorbic acid proved to be beneficial for protecting the leaf tissue from Mn toxicity, it is not considered as the most important factor in Mn tolerance.

The presented data confirm the importance of the apoplast for development and avoidance of Mn toxicity in the leaf tissue of cowpea. Conclusions about the chronology of Mn-induced physiological changes are difficult to draw. A more detailed study with emphasis on very early stages of Mn toxicity and a comparison of Mn-sensitive and Mn-tolerant leaves (genotype, Si nutrition, leaf age) is required.

Key words

cowpea NADH peroxidase proteome manganese tolerance toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibal, F.S. and Fridovich, I. (1982). The scavenging of superoxide radical by manganous complexes: In vitro. Arch. Biochem. Biophys., 214, 452–463.CrossRefGoogle Scholar
  2. Bartlett, R.J. and James, B. (1980). Studying dried, stored soil samples-some pitfalls. Soil Sci. Soc. Amer. J., 44, 721–724.CrossRefGoogle Scholar
  3. Blamey, F.P.C, Joyce, D.C., Edwards, D.G. and Asher, C.J. (1986). Role of trichomes in sunflower tolerance to manganese toxicity. Plant Soil, 91, 171–180.CrossRefGoogle Scholar
  4. Brown, P.H., Graham, R.D. and Nicholas, J.D. (1984). The effects of manganese and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant Soil, 81, 437–440.CrossRefGoogle Scholar
  5. Campa, A. (1991). Biological roles of plant peroxidases: Known and potential functions. In J. Evers, K. Evers and M.B. Grisham (eds.), Peroxidase in chemistry and biology Vol II (pp. 26–49). Boca Raton Fl.: CRS Press.Google Scholar
  6. Castillo, F.J. (1986). Extracellular peroxidases as markers of stress? In H. Greppin, C. Penel, Th. Gaspar (eds.), Molecular and physiological aspects of plant peroxidases. (pp. 419–426) Switzerland: University of Geneva.Google Scholar
  7. Castillo, F.J. and Greppin, H. (1988). Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album leaves after ozone exposure. Environ. Exp. Bot., 28, 231–238.CrossRefGoogle Scholar
  8. Castillo, F.J., Penel, C. and Greppin, H. (1984). Peroxidase release induced by ozone in Sedum album leaves Involvement of Ca2+. Plant Physiol., 74, 846–851.PubMedGoogle Scholar
  9. Chaoui, A., Mazhoudi, S., Ghorbal, M.H. and El Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci., 127, 139–147.CrossRefGoogle Scholar
  10. de Souza, I.R.P. and MacAdam, J.W. (1998). A transient increase in apoplastic peroxidase activity precedes decrease in elongation rate of B73 maize (Zea mays) leaf blades. Physiol. Plant., 104, 556–562.CrossRefGoogle Scholar
  11. Didierjean, L., Frendo, P., Nasser, W., Genot, G., Marivet, J. and Burkard, G. (1996). Heavy-metal-responsive genes in maize: Identification and comparison of their expression upon various forms of abiotic stress. Planta, 199, 1–8.PubMedCrossRefGoogle Scholar
  12. Engelsma, G. (1972). A possible role of divalent manganese ions in the photoinduction of phenylalanine ammonialyase. Plant Physiol., 50, 599–602.PubMedGoogle Scholar
  13. Fecht-Christoffers, M.M., Horst, W.J. (2005). Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris? J. Plant Nutr. Soil Sci., 168, 590–599.CrossRefGoogle Scholar
  14. Fecht-Christoffers, M.M., Maier, P. and Horst, W.J. (2003a). Apoplastic peroxidase and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol. Plant., 117, 237–244.CrossRefGoogle Scholar
  15. Fecht-Christoffers, M.M., Braun, H.P., Lemaitre-Guillier, C., VanDorsselaer, A. and Horst, W.J. (2003b). Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea (Vigna unguiculata). Plant Physiol., 133, 1935–1946.CrossRefGoogle Scholar
  16. Fecht-Christoffers, M.M., Führs, H., Braun, H.P. and Horst, W.J. (2006). The role of H2O2-producing and H2O2-consuming peroxidases in the leaf apoplast of Vigna unguiculata L. in manganese tolerance. Plant Physiol., 140, 1451–1463.PubMedCrossRefGoogle Scholar
  17. Gaspar, T., Penel, C., Castillo, FJ. and Greppin, H., (1985). A two-step control of basic and acidic peroxidases and its significance for growth and development. Physiol. Plant., 54, 418–423.CrossRefGoogle Scholar
  18. González, A., Steffens, K.L. and Lynch, J.P. (1998). Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiol., 118, 493–504.CrossRefPubMedGoogle Scholar
  19. Gupta, M., Cuypers, A., Vangronsveld, J. and Clijsters, H. (1999). Copper affects the enzyme of the ascorbate-glutathioneglutathionee cycle and its related metabolites in the roots of Phaseolus vulgaris. Plant Physiol., 106, 262–267.CrossRefGoogle Scholar
  20. Halliwell, B. (1978). Lignin synthesis. The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese(II) and phenols. Planta, 140, 81–88.CrossRefGoogle Scholar
  21. Heim, A., Brunner, I., Frey, B., Fossard, E. and Luster, J. (2001). Root exudation, organic acids and element distribution in roots of Norway spruce seedlings treated with aluminum in hydrophonics. J.Plant Nutr. Soil Sci., 164, 519–526.CrossRefGoogle Scholar
  22. Hirschi, K.D., Korenkov, V.D., Wilganowski, N.L. and Wagner, G.J. (2000). Expression of arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol., 124, 125–133.PubMedCrossRefGoogle Scholar
  23. Horemanns, N., Foyer, C.H., Potters, G. and Asard, H. (2000). Ascorbate function and associated transport system in plants. Plant Physiol. Biochem., 38, 531–540.CrossRefGoogle Scholar
  24. Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants II. Deposition f oxidized manganese and plant tissue. Soil Sci. Plant Nutr., 33 (4), 595–606.Google Scholar
  25. Horiguchi, T. (1988). Mechanism of manganese toxicity and tolerance of plants IV. Effect of silicon on alleviation of manganese toxicity in rice plants. Soil Sci. Plant Nutr., 34, 65–73.Google Scholar
  26. Horiguchi, T. and Fukomoto, T. (1987). Mechanism of manganese toxicity and tolerance of plants. III. Effect of excess manganese on respiration rate and peroxidase activity of various plant species. J. Soil Sci. Plant Nutr., 58, 713–716.Google Scholar
  27. Horiguchi, T. and Morita, S. (1987). Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J. Plant Nutr., 10, 229–2310.Google Scholar
  28. Horst, W.J. (1982). Quick screening of cowpea genotypes for manganese tolerance during vegetative and reproductive growth. Z. Pflanzenernähr. Bodenkd., 145, 423–435.CrossRefGoogle Scholar
  29. Horst, W.J. (1988). The physiology of manganese toxicity, In M.J. Webb, R.O. Nable, R.D. Graham, and R.J. Hannam (eds.), Mangenese in Soil and Plants. (pp. 175–188). Dodrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  30. Horst, W.J. and Maier, P. (1999). Compartmentation of manganese in the vacuoles and in the apoplast of leaves in relation to genotypic manganese leaf-tissue tolerance in Vigna unguiculata (L.) Walp. In G. Gissel-Nielsen and A., Jensen (eds.), Plant Nutrition - Molecular Biology and Genetics. (pp. 223–234).Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-5716-7Google Scholar
  31. Horst, W.J. and Marschner, H. (1978). Symptome von Mangan-überschuß bei Bohnen. Z. Pflanzenernähr. Bodenkd., 141, 129–142,CrossRefGoogle Scholar
  32. Horst, W.J., Fecht, M., Naumann, A., Wissemeier, A.H. and Maier, P. (1999). Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr. Soil Sci., 162, 263–274.CrossRefGoogle Scholar
  33. Iwasaki, K. and Matsumura, A. (1999). Effect of silicon on alleviation of manganese toxicity in pumpkin (Curcubita moschata Duch cv. Shintosa). Soil Sci. Plant Nutr., 45, 909–920.Google Scholar
  34. Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2001a). Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 238, 281–288.CrossRefGoogle Scholar
  35. Iwasaki, K., Maier, P., Fecht, M. and Horst, W.J. (2001b). Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J. Plant Physiol., 159, 167–173.CrossRefGoogle Scholar
  36. Jung, JL., Maurel, S., Fritig, B. and Guenther, H. (1995). Different pathogenesis-related proteins are expressed in sunflower (Helianthus annuus L.) in response to physical, chemical and stress factors. J. Plant Physiol., 145 (1-2), 153–160.Google Scholar
  37. Kenten, R.H. and Mann, P.J.G. (1950). The oxidation of manganese by peroxidase systems. Biochem J., 46, 67–73.PubMedGoogle Scholar
  38. Khana, P.L. and Michra, B. (1978). Behavior of manganese in some acid soils in Western Germany in relation to pH and air-drying. Geoderma., 20, 289–297.CrossRefGoogle Scholar
  39. Klotz, K.L., Liu, T.T.Y., Liu, L. and Lagrimini, L.M. (1998). Expression of the tobacco anionic peroxidase gene is tissue-specific and developmentally regulated. Plant Mol. Biol., 36, 509–520.PubMedCrossRefGoogle Scholar
  40. Langheinrich, U., Tischner, R. and Goldbold, D.L. (1992). Influence of high Mn supply on Norway spruce (Picea abies (L.) Karst.) seedlings in relation to the nitrogen source. Tree Physiol., 10, 259–271.PubMedGoogle Scholar
  41. MacAdam, J.W., Sharp, R.E. and Nelson, C.J. (1992). Peroxidase activity in the leaf elongation zone of tall fescue II. Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol., 99, 879–885.PubMedGoogle Scholar
  42. Maier, P. (1997). Bedeutung der Kompartimentierung von Mangan und organischen Säuren für die Mangantoleranz von Cowpea (Vigna unguiculata (L.) Walp.). Stuttgart: Verlag Ulrich E. Grauer. ISBN 3-86186-170-4.Google Scholar
  43. Marsh, K.B., Peterson, L.S. and McCown, B.H. (1989). Gradient in Mn accumulation and changes in plant form for potato plants affected by Mn toxicity. Plant Soil, 121, 157–163.CrossRefGoogle Scholar
  44. Mehlhorn, H., Cottam, D.A., Lucas, P.W. and Wellburn, A.R. (1987). Induction of ascorbate peroxidase and glutathione reductase activities by interactions of mixtures of air pollutions. Free Radical Res. Commun., 3, 1–5.Google Scholar
  45. Morgan, P.W., Joham, H.E. and Amin, J.V. (1966). Effect of manganese toxicity on indoleacetic acid oxidase system of cotton. Plant Physiol., 41, 718–724.PubMedGoogle Scholar
  46. Noctor, G. and Foyer, C.H. (1998). Ascorbate and Glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 249–279.PubMedCrossRefGoogle Scholar
  47. Noga, G. and Schmitz, M. (1998). Antioxidants in higher plants: Biosynthesis, characteristics, actions and specific functions in stress defence. Shaker Verlag, Aachen. ISBN 3-8265-4418-8.Google Scholar
  48. Okuda, A. and Takahashi, E. (1962). Studies on the physiological role of silicon in crop plants (Part 5). Effect of silicon supply on the injuries due to excessive amounts of FeII, MnII, CuII, AsII, CoII of barley and rice plant. Jpn. J. Sci Soil Manure, 33, 1–8.Google Scholar
  49. Polle, A. and Renneberg, H. (1993). Significance of antioxidants in plant adaptation to environmental stress. In L. Fowden et al. (ed.) Plant adaption to Environmental Stress, (pp. 264–273). London: Capman and Hall.Google Scholar
  50. Rhodes, M.J.C. (1985). The physiological significance of plant phenolic compounds. Ann. Proc. Phyt. Soc., 25, 99–117.Google Scholar
  51. Rogalla, H. and Römheld, V. (2002). Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell Environ., 25 (4), 549–555.CrossRefGoogle Scholar
  52. Ros Barcelo, A. (1997). Lignification in plant cell walls. Int. Rev. Cyt., 176, 87–132.CrossRefGoogle Scholar
  53. Schaaf, G., Catoni, E., Fitz, M., Schwacke, R., Schneider, A., von Wirén, N. and Frommer, W.B. (2002). A putative role for vacuolar calcium/manganese proton antiporter AtCAX2 in heavy metal detoxification. Plant Biol., 2, 612–618.CrossRefGoogle Scholar
  54. Schmitz, M. and Noga, G. (2000). Ausgewählte pflanzliche Inhaltstoffe und ihr antioxidatives Potential in hydrophilen und lipophilen Extrakten von Phaseolus vulgaris-, Malus domestica- und Vitis vinifera-Blättern. Gartenbauwissenschaften, 65, 56–73.Google Scholar
  55. Smirnoff, N. (2000) Ascorbic acid. Metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3, 229–235Google Scholar
  56. Sonneveld, C. and Voogt, S.J. (1975). Studies on the manganese uptake of lettuce on steam-sterilised glasshouse soils. Plant Soil, 42, 49–64.CrossRefGoogle Scholar
  57. Takahama, U. (1993). Redox state of ascorbic acid in the apoplast of stems of Kalanchoë daigremontiana Physiol. Plant., 89, 791–798.CrossRefGoogle Scholar
  58. Takahama, U. and Oniki, T. (1992). Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiol., 33, 379–387.Google Scholar
  59. Vanacker, H., Harbinson, J., Ruisch, J., Carver, T.L.W. and Foyer, C.H. (1998). Antioxidant defence of the apoplast. Protoplasma, 205, 129–140.CrossRefGoogle Scholar
  60. Van Loon, L.C. and Van Strien, E.A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant. Pathol., 55, 85–97.CrossRefGoogle Scholar
  61. Wang, J. and Evangelou, V.P. (1995). Metal tolerance aspects of plant cell wall and vacuoles. In M. Pessarakli. (ed.), Handvolume of plant and crop physiology. (pp. 695–717). New York: Marcel Dekker.Google Scholar
  62. Williams, D.E. and Vlamis, J. (1957). The effect of silicon on yield and manganese-54 uptake and distribution in leaves of barley plants grown in culture solutions. Plant Physiol., 32, 404–409.PubMedCrossRefGoogle Scholar
  63. Wissemeier, A.H. (1988). Beziehung zwischen Mangantoleranz und Oxidation von Mangan in den Blättern von Cowpea-Genotypen (Vigna unguiculata (L.) Walp.). Stuttgart: Verlag Ulrich E. Grauer. ISBN 3-9803063-6-4.Google Scholar
  64. Wissemeier, A.H. and Horst, W.J. (1990). Manganese oxidation capacity of cowpea [Vigna unguiculata (L.) Walp.] leaves differing in manganese tolerance. J. Plant Physiol., 136, 103–109.Google Scholar
  65. Wissemeier, A.H. and Horst, W.J. (1992). Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 143, 299–309.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M.M. Fecht-Christoffers
    • 1
  • P. Maier
    • 1
  • K. Iwasaki
    • 1
  • H.P. Braun
    • 1
  • W.J. Horst
    • 1
  1. 1.Institut für PflanzenernährungLeibniz Universität HannoverGermany

Personalised recommendations