Skip to main content

The Worth of Long-Range Lightning Observations on Overland Satellite Rainfall Estimation

  • Chapter

Part of the book series: Advances In Global Change Research ((AGLO,volume 28))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  • Anagnostou, E. N., T. Chronis, and D. P. Lalas, 2002: New receiver network advances longrange lightning monitoring. EOS Feature Article, AGU, 83(50), 589, 594-595.

    Google Scholar 

  • Anagnostou, E. N., A. J. Negri, and R. F. Adler, 1999: A satellite infrared technique for diurnal rainfall variability studies. J. Geophys. Res., 104 (D24), 31477-31488.

    Article  Google Scholar 

  • Arkin, P. A. and B. N. Meisner, 1987: The relationship between larger scale convective rainfall and cold cloud over the Western Hemisphere during 1982-84. Mon. Wea. Rev., 115, 51-74.

    Article  Google Scholar 

  • Arkin, P. A. and P. Xie, 1994: The global Precipitation Climate Project: First Algorithm Intercomparison Project. Bull. Amer. Meteor. Soc., 77, 2875-2887.

    Google Scholar 

  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108-122.

    Article  Google Scholar 

  • Bremmer, H., 1949: Terrestrial radio waves. Elsevier Press, New York.

    Google Scholar 

  • Budden, K. G., 1951: The propagation of a radio-atmospheric. Phil. Mag., Ser 7, 42, 1-19.

    Google Scholar 

  • Cecil, D. J. and E. J. Zipser, 1999: Relationships between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice-scattering signature and lightning. Mon. Wea. Rev., 127, 103-123.

    Article  Google Scholar 

  • Chang, D.-E., J. A. Weinman, C. A. Morales, and W. S. Olson, 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day Storm. Mon. Wea. Rev., 129, 1809-1833.

    Article  Google Scholar 

  • Christian, H. J., R. J. Blakeslee, S. J. Goodman, D. A. Mach, M. F. Stewart, D. E. Buechler, W. J. Koshak, J. M. Hall, W. L. Boeck, K. T. Driscoll, and D. J. Boccippio, 1999: The Lightning Imaging Sensor. Proc. 11th Int. Conf. on Atmos. Electricity, Guntersville, Alabama, 746-749.

    Google Scholar 

  • Chronis, T., E. N., Anagnostou, and T. Dinku, 2004: High-frequency estimation of thunderstorms via satellite infrared and a long-range lightning network in Europe. Quart. J. Roy. Meteor. Soc., 130, 1555-1574.

    Article  Google Scholar 

  • Chronis, T. G. and E. N. Anagnostou, 2003: Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe. J. Geophys. Res., 108 (D24), 4779, doi:10.1029/2003JD003776.

    Article  Google Scholar 

  • Cummins, K., M. Murphy, E. Bardo, W. Hiscox, R. Pyle, and A. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 9035-9044.

    Article  Google Scholar 

  • Goodman, S. J., D. E. Buechler, and P. J. Meyer, 1988: Convective tendency images derived from a combination of lightning and satellite data. Wea. Forecasting, 3, 173-188.

    Article  Google Scholar 

  • Grandt, C., 1992: Thunderstorm monitoring in south Africa and Europe by means of Very Low Frequency sferics. J. Geophys. Res., 97 (D16), 18215-18226.

    Google Scholar 

  • Grecu, M. and E. N. Anagnostou, 2001: Overland precipitation estimation from TRMM passive microwave observations. J. Appl. Meteor., 40, 1367-80.

    Article  Google Scholar 

  • Grecu, M., E. N. Anagnostou, and R. F. Adler, 2000: Assessment of the use of lightning information in satellite infrared rainfall estimation. J. Hydrometeor., 1, 211-221.

    Article  Google Scholar 

  • Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 1176-1190.

    Article  Google Scholar 

  • Hsu, K., H. Gupta, X. Gao, and S. Sorooshian, 1999: Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resources Res., 35, 1605-1618.

    Article  Google Scholar 

  • Huffman, G. J., R. F. Adler, E. F. Stocker, D. T. Bolvin, and E. J. Nelkin, 2003: Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in both real and postreal time. Proc. 12th Conf. Satellite Meteorology and Oceanography, 9-13 Feb. 2003, Long Beach, CA.

    Google Scholar 

  • Krider, E. P., 1996: 75 years of research on the physics of a lightning discharge, Chapter 11 in Historical Essays on Meteorology, 1919-1995: The Diamond Anniversary History Volume of the American Meteorological Society, AMS, Boston, MA, June.

    Google Scholar 

  • Lee, A. C. L., 1986a: An experimental study of the remote location of lightning flashes using a VLF arrival time difference technique. Quart. J. Roy. Meteor. Soc., 112, 203-229.

    Article  Google Scholar 

  • Lee, A. C. L., 1986b: An operational system for remote location of lightning flashes using a VLF arrival time difference technique. J. Atmos. Oceanic Technol., 3, 630-642.

    Article  Google Scholar 

  • Lyons, W. A., T. E. Nelson, E. R. Williams, S. A. Cummer, and M. A. Stanley, 2003: Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Wea. Rev., 131, 2417-2427.

    Article  Google Scholar 

  • Mohr, K. I., R. Toracinta, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part II. SSM/I brightness temperatures and lightning. J. Appl. Meteor., 35, 919-931.

    Article  Google Scholar 

  • Morales, C. and E. N. Anagnostou, 2003: Extending the capabilities of high-frequency rainfall estimation from geostationary-based satellite infrared via a network of long-range lightning observations. J. Hydrometeor., 4, 141-159.

    Article  Google Scholar 

  • Negri, A. J., L. Xu, and R. F. Adler, 2002: A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res., 107 (D20), 8048, doi:10.1029/2000JD000265.

    Article  Google Scholar 

  • Simpson, G. C. and F. J. Scrase, 1937: The distribution of electricity in thunderstorms. Proc. Roy. Soc. A, 161, 309-52.

    Article  Google Scholar 

  • Simpson, S., R. F. Adler, and R. G. North, 1988: A proposed tropical rainfall measuring mission. Bull. Amer. Meteor. Soc., 69, 278-295.

    Article  Google Scholar 

  • Smith, E. A., H. J. Cooper, X. Xiang, A. Mugnai, and G. J. Tripoli, 1992: Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness-temperature properties of a time-dependent cloud-radiation model. J. Appl. Meteor., 31, 506-531.

    Article  Google Scholar 

  • Solomon, R. and M. Baker, 1998: Lightning flash rate and type in convective storms, J. Geophys. Res., 103 (D12), 14041-14057.

    Article  Google Scholar 

  • Takahashi, T., T. Takuya, and S. Yasuo, 1999: Charges on graupel and snow crystals and the electrical structure of winter thunderstorms. J. Atmos. Sci., 56, 1561-1578.

    Article  Google Scholar 

  • Todd, M. C., C. Kidd, D. Kniveton, and T. J. Bellerby, 2000: A combined satellite infrared and passive microwave technique for estimation of small scale rainfall. J. Atmos. Oceanic Technol., 18, 742-754.

    Article  Google Scholar 

  • Toracinta, E. R., D. J. Cecil, and E. J. Zipser, 2002: Radar, passive microwave, and lightning characteristics of precipitating systems in the Tropics. Mon. Wea. Rev., 130, 802-824.

    Article  Google Scholar 

  • Williams, E. R., M. E. Weber, and R. E. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94 (D11), 13213-13220.

    Article  Google Scholar 

  • Ziegler, C. D., J. D. McGorman, and P. Ray, 1991: A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm. J. Geophys. Res., 96 (D7), 12833-12855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Anagnostou, E.N., Chronis, T.G. (2007). The Worth of Long-Range Lightning Observations on Overland Satellite Rainfall Estimation. In: Levizzani, V., Bauer, P., Turk, F.J. (eds) Measuring Precipitation From Space. Advances In Global Change Research, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5835-6_11

Download citation

Publish with us

Policies and ethics