Skip to main content

Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon

  • Chapter
Long-term Limnological Research and Monitoring at Crater Lake, Oregon

Part of the book series: Developments in Hydrobiology ((DIHY,volume 191))

  • 467 Accesses

Abstract

Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified in August and September was usually between depths of 100 m and 120 m. In comparison, the depth of maximum primary production ranged from 60 m to 80 m at this time of year.

Regression analysis detected a weak negative relationship between chlorophyll concentration and Secchi disk depth, a measure of lake transparency. However, interannual changes in chlorophyll concentration and the species composition of the phytoplankton could not be explained by the removal of the septic field near Rim Village or by patterns of upwelling from the deep lake. An alternative trophic hypothesis proposes that the productivity of Crater Lake is controlled primarily by long-term patterns of climatic change that regulate the supply of allochthonous nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. R., K. L. Denman, T. M. Powell, P. J. Richerson, R. C. Richards & C. R. Goldman, 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnology and Oceanography 29: 862–878.

    CAS  Google Scholar 

  • Anderson, G. C., 1969. Subsurface chlorophyll maximum in the Northeast Pacific Ocean. Limnology and Oceanography 14: 386–391.

    CAS  Google Scholar 

  • Bacon, C. R., 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. Journal of Volcanology and Geothermal Research 18: 57–115.

    Article  CAS  Google Scholar 

  • Bacon, C. R. & M. A. Lanphere, 1990. The geologic setting of Crater Lake, Oregon. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosytem Study. Pacific Division. American Association for Advancement of Science, San Francisco, CA, 19–27.

    Google Scholar 

  • Barber, J. H. Jr. & C. H. Nelson, 1990. Sedimentary history of Crater Lake caldera, Oregon. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosytem Study. Pacific Division. American Association for Advancement of Science, San Francisco, CA, 29–39.

    Google Scholar 

  • Brode, J. S., 1938. The denizens of Crater Lake. Northwest Science 12: 298–310.

    Google Scholar 

  • Brooks, A. S. & B. G. Torke, 1977. Vertical and seasonal distribution of chlorophyll a in Lake Michigan. Journal of the Fisheries Research Board of Canada 34: 2280–2287.

    CAS  Google Scholar 

  • Buktenica, M. W., S. F. Girdner, G. L. Larson & C. D. McIntire, this issue. Variability of kokanee and rainbow trout food habits, distribution, and population dynamics, in an ultraoligotrophic lake with no manipulative management.

    Google Scholar 

  • Byrne, J. V., 1965. Morphometry of Crater Lake, Oregon. Limnology and Oceanography 10: 462–465.

    Google Scholar 

  • Coon, T. G., M. Lopez, P. J. Richerson, T. M. Powell & C. R. Goldman, 1987. Summer dynamics of the deep chlorophyll maximum in Lake Tahoe. Journal of Plankton Research 9: 327–344.

    Article  CAS  Google Scholar 

  • Crawford, G. B. & R. W. Collier, 1997. Observations of a deep-mixing event in Crater Lake, Oregon. Limnology and Oceanography 42: 299–306.

    Article  Google Scholar 

  • Debacon, M. K. & C. D. McIntire, 1990. Spatial and temporal patterns in the phytoplankton of Crater Lake (1985–1987). In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosytem Study. Pacific Division, American Association for Advancement of Science, San Francisco, CA, 167–175.

    Google Scholar 

  • Debacon, M. K. & C. D. McIntire, 1991. Taxonomic structure of phytoplankton assemblages in Crater Lake, Oregon, USA. Freshwater Biology 25: 95–104.

    Article  Google Scholar 

  • Dodds, W. K., J. C. Priscu & B. K. Ellis, 1991. Seasonal uptake and regeneration of inorganic nitrogen and phosphorus in a large oligotrophic lake: size-fractionation and antibiotic treatment. Journal of Plankton Research 13: 1339–1358.

    Article  CAS  Google Scholar 

  • Donaldson, J. R. & F. O. Hoffman, 1968. Zooplankton population dynamics, Crater Lake. Crater Lake Report 2. National Park Service, Crater Lake, OR.

    Google Scholar 

  • Dymond, J., R. Collier & J. McManus, 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: implications for edge effects and sediment focusing in lakes. Limnology and Oceanography 41: 732–743.

    Article  CAS  Google Scholar 

  • Goldman, C. R., 1963. The measurement of primary productivity and limiting factors in freshwater with carbon-14. In Doty, M. S. (ed.), Primary Productivity Measurement, Marine and Freshwater. U. S. Atomic Energy Commission TID-7633: 103–113.

    Google Scholar 

  • Goldman, C. R. & E. de Amezaga, 1975. Spatial and temporal changes in the primary productivity of Lake Tahoe, California-Nevada, between 1959 and 1971. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 19:812–825.

    Google Scholar 

  • Groeger, A. W. & T. E. Tietjen, 1993. Physiological responses of nutrient-limited phytoplankton to nutrient addition. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 25: 370–272.

    CAS  Google Scholar 

  • Hill, M. O., R. G. H. Bunce & M. W. Shaw, 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. Journal of Ecology 63:597–613.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1987. Data Analysis in Community and Landscape Ecology. Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen.

    Google Scholar 

  • Kemmerer, G., F. Bovard & W. R. Boorman, 1924. Northwestern lakes of the United States: biological and chemical studies with reference to possibilities in production of fish. Bulletin of the U. S. Bureau of Fisheries 39: 51–140.

    Google Scholar 

  • Kiefer, D. A., O. Holm-Hansen, C. R. Goldman, R. Richards & T. Berman, 1972. Phytoplankton in Lake Tahoe: deep-living populations. Limnology and Oceanography 17: 418–422.

    Google Scholar 

  • Larson, D. W., 1972. Temperature, transparency, and phytoplankton productivity in Crater Lake, Oregon. Limnology and Oceanography 17: 410–417.

    Google Scholar 

  • Larson, D. W., 1984. The Crater Lake study: detection of possible optical deterioration of a rare, unusually deep caldera lake in Oregon, USA. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 513–517.

    Google Scholar 

  • Larson, D. W., 2002. Probing the depths of Crater Lake. American Scientist 90: 64–71.

    Article  Google Scholar 

  • Larson, D. W., C. N. Dahm & N. S. Geiger, 1987. Vertical partitioning of the phytoplankton assemblage in ultraoligotrophic Crater Lake, Oregon, USA. Freshwater Biology 18: 429–442.

    Article  Google Scholar 

  • Larson, D. W., C. N. Dahm & N. S. Geiger, 1990. Limnological response of Crater Lake to possible longterm sewage influx. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosytem Study. Pacific Division, American Association for Advancement of Science, San Francisco, CA, 197–212.

    Google Scholar 

  • Larson, G. L., 2000. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA. Lake and Reservoir Management 16: 333–339.

    CAS  Google Scholar 

  • Larson, G. L. & M. Hurley, 1993. Photometer. In Larson, G. L., C. D. McIntire & R. Jacobs (eds), Crater Lake Limnological Studies Final Report. National Park Service Technical Report NPS/PNROSU/NRTR-93/03: 317–329.

    Google Scholar 

  • Larson, G. L., C. D. McIntire, M. Hurley & M. W. Buktenica, 1996. Temperature, water chemistry, and optical properties of Crater Lake. Lake and Reservoir Management 12: 230–247.

    CAS  Google Scholar 

  • McManus, J., 1992. On chemical and physical limnology of Crater Lake, Oregon. PhD. thesis. Oregon State University, Corvallis.

    Google Scholar 

  • McManus, J., R. W. Collier & J. Dymond, 1993. Mixing processes in Crater Lake, Oregon. Journal of Geophysics Research 98: 18,295–18,307.

    Google Scholar 

  • McIntire, C. D. & W. S. Overton, 1971. Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology 52: 758–777.

    Article  Google Scholar 

  • McIntire, C. D., G. L. Larson, R. E. Truitt & M. K. Debacon, 1996. Taxonomic structure and productivity of phytoplankton assemblages in Crater Lake, Oregon. Lake and Reservoir Management 12: 259–280.

    Google Scholar 

  • Moll, R. A. & E. F. Stoermer, 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Archiv für Hydrobiologie 94: 425–440.

    Google Scholar 

  • Nathenson, M. & J. M. Thompson, 1990. Chemistry of Crater Lake, Oregon, and nearby springs in relation to weathering. In Drake, E. T., G. L. Larson, J. Dymond & R. Collier (eds), Crater Lake: An Ecosytem Study. Pacific Division, American Association for Advancement of Science, San Francisco, CA, 115–126.

    Google Scholar 

  • Phillips, K. N. & A. S. Van Denburgh, 1968. Hydrology of Crater, East, and Davis lakes, Oregon. U. S. Geological Survey Water-Supply Paper 1859-E.

    Google Scholar 

  • Pimentel, R. A., 1979. Morphometrics, The Multivariate Analysis of Biological Data. Kendall-Hunt, Dubuque, Iowa.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rippka, R., A. Neilson, R. Kunisawa & G. Cohen-Bazire, 1971. Nitrogen fixation by unicellular blue-green algae. Archives of Microbiology 76: 341–348.

    CAS  Google Scholar 

  • Salinas, J. & D. W. Larson, 2000. Phytoplankton primary production and light in Waldo Lake, Oregon. Lake and Reservoir Management 16: 71–84.

    Article  CAS  Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge, UK, 9–104.

    Google Scholar 

  • Tilzer, M. M. & C. R. Goldman, 1978. Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology 59: 810–821.

    Article  Google Scholar 

  • Utterback, C. L., L. D. Phifer & R. J. Robinson, 1942. Some chemical, planktonic and optical characteristics of Crater Lake. Ecology 23: 97–103.

    Article  Google Scholar 

  • Venrick, E. L., J. A. McGowan & A. W. Mantla, 1973. Deep maxima of photosynthetic chlorophyll in the Pacific Ocean. Fishery Bulletin 71: 41–52.

    CAS  Google Scholar 

  • Vincent, W. F. & C. R. Goldman, 1980. Evidence for algal heterotrophy in Lake Tahoe, California-Nevada. Limnology and Oceanography 25: 89–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David McIntire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McIntire, C.D., Larson, G.L., Truitt, R.E. (2007). Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon. In: Larson, G.L., Collier, R., Buktenica, M.W. (eds) Long-term Limnological Research and Monitoring at Crater Lake, Oregon. Developments in Hydrobiology, vol 191. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5824-0_11

Download citation

Publish with us

Policies and ethics