Skip to main content

CONTROL OF SCLEROTIAL PATHOGENS WITH THE MYCOPARASITE CONIOTHYRIUM MINITANS

  • Conference paper
Novel Biotechnologies for Biocontrol Agent Enhancement and Management

Abstract

Pressure to reduce the use of chemicals in the environment has led to the search for alternative sustainable methods to control soil-borne pathogens, especially those plant pathogens that formlong-lived resting bodies (sclerotia). Mycoparasites that attack sclerotia have been explored as biocontrol agents of these pathogens and some mycoparasites such as Coniothyrium minitans and Trichoderma species have been the focus of particular study. This paper reviews recent developments in the use, ecology, impact and modes of action of C. minitans especially against Sclerotinia sclerotiorum that may be influential in improving reproducibility of disease control in the future. Some studies of the use of Trichoderma viride to control Allium white rot caused by Sclerotium cepivorum are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Clarkson, T. Payne, A. Mead, and J. M. Whipps, Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil, Plant Pathol. 51, 735–745 (2002).

    Article  Google Scholar 

  2. P. B. Adams and W. A. Ayers, Ecology of Sclerotinia species, Phytopathology 69, 896–899 (1979).

    Google Scholar 

  3. J. R. Coley-Smith, C. M. Mitchell, and C. E. Sansford, Long-term survival of sclerotia of Sclerotium cepivorum and Stromatinia gladioli, Plant Pathol. 39, 58–69 (1990).

    Article  Google Scholar 

  4. G. J. Boland and R. Hall, Index of plant hosts of Sclerotinia sclerotiorum, Can. J. Plant Pathol. 16, 93–108 (1994).

    Article  Google Scholar 

  5. J. M. Whipps, Effects of mycoparasites on sclerotia-forming fungi, in Biotic Interactions and Soil-borne Diseases, edited by A. B. R. Beemster, G. J. Bollen, M. Gerlagh, M. A. Ruissen, B. Schippers, and A. Tempel (Elsevier, Amsterdam, 1991), pp. 129–140.

    Google Scholar 

  6. G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, Trichoderma species—Opportunistic, avirulent plant symbionts, Nature Rev. Microbiol. 2, 43–56 (2004).

    Article  CAS  Google Scholar 

  7. J. M. Whipps and K. G. Davies, Success in biological control of plant pathogens and nematodes by microorganisms, in Biological Control: Measures of Success, edited by G. Gurr and S. Wratten (Kluwer, Dordrecht, 2000), pp. 231–269.

    Google Scholar 

  8. APS Biological Control Committee, Commercial products available in the U.S.A. for use against plant pathogens, available at http://www.oardc.ohio-state.edu/apsbcc/ (2006).

    Google Scholar 

  9. K. A. El-Tarabily, M. H. Soliman, A. H. Nassar, H. A. Al-Hassani, K. Sivasithamparam, F. McKenna, and G. E. St. J. Hardy, Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes, Plant Pathol. 49, 573–583 (2000).

    Article  Google Scholar 

  10. P. Hebbar, O. Berge, T. Heulin, and S. P. Singh, Bacterial antagonists of sunflower (Helianthus annuus, L) fungal pathogens, Plant Soil 133, 131–140 (1991).

    Article  Google Scholar 

  11. T. J. McLoughlin, J. P. Quinn, A. Bettermann, and R. Bookland, Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease, Appl. Environ. Microbiol. 58, 1760–1763 (1992).

    PubMed  CAS  Google Scholar 

  12. C. Thaning, C. J. Welch, J. J. Borowicz, R. Hedman, and B. Gerhardson, Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: Identification of a chlorinated macrolide as one of the causal agents, Soil Biol. Biochem. 33, 1817–1826 (2001).

    Article  CAS  Google Scholar 

  13. J. J. Levenfors, R. Hedman, C. Thaning, B. Gerhardson, and C. J. Welch, Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153, Soil Biol. Biochem. 36, 677–685 (2004).

    Article  CAS  Google Scholar 

  14. D. J. Hannusch and G. J. Boland, Interactions of air temperature, relative humidity and biological control agents on grey mold of bean, Eur. J. Plant Pathol. 102, 133–142 (1996).

    Article  Google Scholar 

  15. D. J. Hannusch and G. J. Boland, Influence of air temperature and relative humidity on biological control of white mold of bean (Sclerotinia sclerotiorum), Phytopathology 86, 156–162 (1996).

    Article  Google Scholar 

  16. H. C. Huang, E. G. Kokko, L. J. Yanke, and R. C. Phillippe, Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum, Can. J. Microbiol. 39, 227–233 (1993).

    Article  Google Scholar 

  17. M. Kamensky, M. Ovadis, I. Chet, and L. Chernin, Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases, Soil Biol. Biochem. 35, 323–331 (2003).

    Article  CAS  Google Scholar 

  18. G. Q. Li, H. C. Huang, and S. N. Acharya, Antagonism and biocontrol potential of Ulocladium atrum on Sclerotinia sclerotiorum, Biol. Control 28, 11–18 (2003).

    Article  Google Scholar 

  19. R. D. Reeleder, The use of yeasts for biological control of the plant pathogen Sclerotinia sclerotiorum, Biocontrol 49, 583–594 (2004).

    Article  Google Scholar 

  20. S. Savchuk and W. G. D. Fernando, Effect of timing of application and population dynamics on the degree of biological control of Sclerotinia sclerotiorum by bacterial antagonists, FEMS Microbiol. Ecol. 49, 379–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. J. P. Clarkson and J. M. Whipps, Control of sclerotial pathogens in horticulture. Pesticide Outlook June 2002, 97–101 (2002).

    Google Scholar 

  22. J. M. Whipps, Developments in the biological control of soil-borne plant pathogens, Adv. Bot. Res. 26 1–134 (1997).

    Google Scholar 

  23. G. J. Turner and H. T. Tribe, Coniothyrium minitans and its parasitism of Sclerotinia species, Trans. Brit. Mycol. Soc. 66, 97–105 (1976).

    Google Scholar 

  24. W. A. Campbell, A new species of Coniothyrium parasitic on sclerotia, Mycologia 39, 190–195 (1947).

    Article  Google Scholar 

  25. C. Monaco, Evaluation of the efficiency of mycoparasites on Sclerotinia sclerotiorum “in vitro,” Rev. Fac. Agronomia 65, 67–73 (1989).

    Google Scholar 

  26. C. Sandys-Winsch, J. M. Whipps, M. Gerlagh, and M. Kruse, World distribution of the sclerotial mycoparasite Coniothyrium minitans, Mycol. Res. 97, 1175–1178 (1993).

    Google Scholar 

  27. S. P. Budge and J. M. Whipps, Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce, Plant Pathol. 40, 59–66 (1991).

    Article  Google Scholar 

  28. H. C. Huang and J. A. Hoes, Importance of plant spacing and sclerotial position to development of Sclerotinia wilt of sunflower, Plant Dis. 64, 81–84 (1980).

    Article  Google Scholar 

  29. M. Gerlagh, H. M. Goossen-van de Geijn, N. J. Fokkema, and P. F. G. Vereijken, Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops, Phytopathology 89, 141–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. P. Lüth, The control of Sclerotinia spp. and Sclerotium cepivorum with the biological fungicide Contans® WG—experiences from field trials and commercial use, in Proceedings of the XI International Sclerotinia Workshop, York, England, July 8–12, 2001, edited by C. S. Young and K. J. D. Hughes (Central Science Laboratory, York, 2001), pp. 37–38.

    Google Scholar 

  31. D. L. McLaren, H. C. Huang, G. C. Kozub, and S. R. Rimmer, Biological control of Sclerotinia wilt of sunflower with Talaromyces flavus and Coniothyrium minitans, Plant Dis. 78, 231–235 (1994).

    Article  Google Scholar 

  32. A. H. M. Ahmed and H. T. Tribe, Biological control of white rot of onion (Sclerotium cepivorum) by Coniothyrium minitans, Plant Pathol. 26, 75–78 (1977).

    Article  Google Scholar 

  33. M. P. McQuilken, S. J. Mitchell, S. P. Budge, J. M. Whipps, J. S. Fenlon, and S. A. Archer, Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape, Plant Pathol. 44, 883–896 (1995).

    Article  Google Scholar 

  34. E. E. Jones and J. M. Whipps, Effect of inoculum rates and sources of Coniothyrium minitans on control of Sclerotinia sclerotiorum disease in glasshouse lettuce, Eur. J. Plant Pathol. 108, 527–538 (2002).

    Article  Google Scholar 

  35. H. C. Huang and G. C. Kozub, Monocropping to sunflower and decline of Sclerotinia wilt, Bot. Bull. Acad. Sinica 32, 163–170 (1991).

    Google Scholar 

  36. M. Gerlagh, H. M. Goossen-van de Geijn, A. E. Hoogland, and P. F. G. Vereijken, Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans—Timing of application, concentration and quality of conidial suspension of the mycoparasite, Eur. J. Plant Pathol. 109, 489–502 (2003).

    Article  Google Scholar 

  37. M. Gerlagh, H. M. Goossen-van de Geijn, A. E. Hoogland, P. F. G. Vereijken, P. F. M. Horsten, and B. H. de Haas, Effect of volume and concentration of conidial suspensions of Coniothyrium minitans on infection of Sclerotinia sclerotiorum sclerotia, Biocontrol Sci. Technol. 14, 675–690 (2004).

    Article  Google Scholar 

  38. H. C. Huang, E. Bremer, R. K. Hynes, and R. S. Erickson, Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum, Biol. Control 18, 270–276 (2000).

    Article  Google Scholar 

  39. G. Q. Li, H. C. Huang, and S. N. Acharya, Importance of pollen and senescent petals in the suppression of alfalfa blossom blight (Sclerotinia sclerotiorum) by Coniothyrium minitans, Biocontrol Sci. Technol. 13, 495–505 (2003).

    Article  Google Scholar 

  40. P. Trutmann, P. J. Keane, and P. R. Merriman, Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans, Trans. Brit. Mycol. Soc. 78, 521–529 (1982).

    Google Scholar 

  41. S. P. Budge, M. P. McQuilken, J. S. Fenlon, and J. M. Whipps, Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce, Biol. Control 5, 513–522 (1995).

    Article  Google Scholar 

  42. M. P. McQuilken, S. P. Budge, and J. M. Whipps, Production, survival and evaluation of liquid culture-produced inocula of Coniothyrium minitans against Sclerotinia sclerotiorum, Biocontrol Sci. Technol. 7, 23–36 (1997).

    Article  Google Scholar 

  43. T. de Vrije, N. Antoine, R. M. Buitelaar, S. Bruckner, M. Dissevelt, A. Durand, M. Gerlagh, E. E. Jones, P. Lüth, J. Oostra, W. J. Ravensberg, R. Renaud, A. Rinzema, F. J. Weber, and J. M. Whipps, The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing, Appl. Microbiol. Biotechnol. 56, 58–68 (2001).

    Article  PubMed  Google Scholar 

  44. E. E. Jones, A. Mead, and J. M. Whipps, Evaluation of different Coniothyrium minitans inoculum sources and application rates on apothecial production and infection of Sclerotinia sclerotiorum sclerotia, Soil Biol. Biochem. 35, 409–419 (2003).

    Article  CAS  Google Scholar 

  45. E. E. Jones and A. Stewart, Selection of mycoparasites of sclerotia of Sclerotinia sclerotiorum isolated from New Zealand soils, N. Z. J. Crop Hort. Sci. 28, 105–114 (2000).

    Google Scholar 

  46. E. E. Jones, A. Mead, and J. M. Whipps, Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: control of sclerotinia disease in glasshouse lettuce. Plant Pathol. 53, 611–620 (2004).

    Article  Google Scholar 

  47. E. E. Jones, J. P. Clarkson, A. Mead, and J. M. Whipps, Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia sclerotiorum: Influence on apothecial production, Plant Pathol. 53, 621–628 (2004).

    Article  Google Scholar 

  48. M. P. McQuilken, S. P. Budge, and J. M. Whipps, Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans, Mycol. Res. 101, 11–17 (1997).

    Article  Google Scholar 

  49. E. E. Jones, A. Stewart, and J. M. Whipps, Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil, Mycol. Res. 107, 267–276 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. J. M. Whipps, Microbial interactions and biocontrol in the rhizosphere, J. Exp. Bot. 52, 487–511 (2001).

    PubMed  CAS  Google Scholar 

  51. R. Noble and E. Coventry, Suppression of soil-borne plant diseases with composts: A review, Biocontrol Sci. Technol. 15, 3–20 (2005).

    Article  Google Scholar 

  52. M. C. A. van Loenen, Y. Turbett, C. E. Mullins, N. E. H. Feilden, M. J. Wilson, C. Leifert, and W. E. Seel, Low temperature-short duration steaming of soil kills soil-borne pathogens, nematode pests and weeds, Eur. J. Plant Pathol. 109, 993–1002 (2003).

    Article  Google Scholar 

  53. S. P. Budge and J. M. Whipps, Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application, Phytopathology 91, 221–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. A. J. Bennett, C. Leifert, and J. M. Whipps, Effect of combined treatment of pasteurisation and Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum in soil, Eur. J. Plant Pathol. 113, 197–209 (2005).

    Article  Google Scholar 

  55. R. H. Williams, J. M. Whipps, and R. C. Cooke, Role of soil mesofauna in dispersal of Coniothyrium minitans: Transmission to sclerotia of Sclerotinia sclerotiorum, Soil Biol. Biochem. 30, 1929–1935 (1998).

    Article  CAS  Google Scholar 

  56. R. H. Williams, J. M. Whipps, and R. C. Cooke, Role of soil mesofauna in dispersal of Coniothyrium minitans: Mechanisms of transmission, Soil Biol. Biochem. 30, 1937–1945 (1998).

    Article  CAS  Google Scholar 

  57. P. Trutmann, P. J. Keane, and P. R. Merriman, Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans, Soil Biol. Biochem. 12, 461–465 (1980).

    Article  Google Scholar 

  58. J. M. Whipps, Growth of the collembolan Folsomia candida on cultures of the mycoparasite Coniothyrium minitans and sclerotia of Sclerotinia sclerotiorum, Mycol. Res. 97, 1277–1280 (1993).

    Google Scholar 

  59. J. M. Whipps and S. P. Budge, Transmission of the mycoparasite Coniothyrium minitans by collembolan Folsomia candida (Collembola, Entomobryidae) and glasshouse sciarid-Bradysia sp. (Diptera, Sciaridae), Ann. Appl. Biol. 123, 165–171 (1993).

    Article  Google Scholar 

  60. S. J. Kay and A. Stewart, Evaluation of fungal antagonists for control of onion white-rot in soil box trials, Plant Pathol. 43, 371–377 (1994).

    Article  Google Scholar 

  61. J. P. Clarkson, A. Scruby, A. Mead, C. Wright, B. Smith, and J. M. Whipps, Integrated control of Allium white rot with Trichoderma viride, tebuconazole and composted onion waste, Plant Pathol. 55, 375–386 (2006).

    Article  CAS  Google Scholar 

  62. E. Coventry, R. Noble, A. Mead, and J. M. Whipps, Control of Allium white rot (Sclerotium cepivorum) with composted onion waste, Soil Biol. Biochem. 34, 1037–1045 (2002).

    Article  CAS  Google Scholar 

  63. E. Coventry, R. Noble, A. Mead, and J. M. Whipps, Suppression of Allium white rot (Sclerotium cepivorum) in different soils using vegetable wastes, Eur. J. Plant Pathol. 111, 101–112 (2005).

    Article  Google Scholar 

  64. E. Coventry, R. Noble, A. Mead, F. R. Marin, J. A. Perez, and J. M. Whipps, Allium white rot suppression with composts and Trichoderma viride in relation to sclerotia viability, Phytopathology 96, 1009–1020 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. J. P. Clarkson, A. Mead, T. Payne, and J. M. Whipps, Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma, Plant Pathol. 53, 353–362 (2004).

    Article  Google Scholar 

  66. Y. Ramona and M. A. Line, Potential for the large-scale production of a biocontrol fungus—In raw and composted paper mill waste, Compost Sci. Utiliz. 10, 57–62 (2002).

    Google Scholar 

  67. J. M. Whipps and M. Gerlagh, Biology of Coniothyrium minitans and its potential for use in disease biocontrol, Mycol. Res. 96, 897–907 (1992).

    Article  Google Scholar 

  68. J. M. Whipps, Ecological and biotechnological considerations in enhancing disease biocontrol, in Enhancing Biocontrol Agents and Handling Risks, edited by M. Vurro, J. Gressel, T. Butt, G. E. Harman, A. Pilgeram, R. J. St. Leger, D. L. Nuss (IOS Press, Ohmsha, 2001), pp. 43–51.

    Google Scholar 

  69. H. C. Huang, Distribution of Coniothyrium minitans in Manitoba sunflower fields, Can. J. Plant Pathol. 3, 219–222 (1981).

    Article  Google Scholar 

  70. E. E. Jones, M. Carpenter, D. Fong, A. Goldstein, A. Thrush, A. Crowhurst, and A. Stewart, Co-transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and β-glucuronidase markers, Mycol. Res. 103, 929–937 (1999).

    Article  CAS  Google Scholar 

  71. R. H. Williams, Dispersal of the mycoparasite Coniothyrium minitans, PhD thesis (Department of Animal and Plant Sciences, University of Sheffield, Sheffield, 1996), p. 144.

    Google Scholar 

  72. M. J. Butler and A. W. Day, Fungal melanins: A review, Can. J. Microbiol. 44, 1115–1136 (1998).

    Article  CAS  Google Scholar 

  73. H. T. Tribe, On the parasitism of Sclerotinia trifoliorum by Coniothyrium minitans, Trans. Brit. Mycol. Soc. 40, 489–499 (1957).

    Article  Google Scholar 

  74. A. J. Bennett, C. Leifert, and J. M. Whipps, Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soil, Soil Biol. Biochem. 38, 164–172 (2006).

    Article  CAS  Google Scholar 

  75. T. A. Brimner and G. J. Boland, A review of the non-target effects of fungi used to biologically control plant diseases, Agr. Ecosyst. Environ.100, 3–16 (2003).

    Article  Google Scholar 

  76. A. Winding, S. J. Binnerup, and H. Pritchard, Non-target effects of bacterial biological control agents suppressing root pathogenic fungi, FEMS Microbiol. Ecol. 47, 129–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. M. P. McQuilken, J. Gemmell, and J. M. Whipps, Some nutritional factors affecting production of biomass and antifungal metabolites of Coniothyrium minitans, Biocontrol Sci. Technol. 12, 443–454 (2002).

    Article  Google Scholar 

  78. M. P. McQuilken, J. Gemmell, R. A. Hill, and J. M. Whipps, Production of macrosphelide A by the mycoparasite Coniothyrium minitans, FEMS Microbiol. Lett. 219, 27–31 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. M. Li, X. Gong, J. Zheng, D. Jiang, Y. Fu, and M. Hou, Transformation of Coniothyrium minitans, a parasite of Sclerotinia sclerotiorum, with Agrobacterium tumefaciens, FEMS Microbiol. Lett. 243, 323–329 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. A. J. Bennett, C. Leifert, and J. M. Whipps, Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils, Soil Biol. Biochem. 35, 1565–1573 (2003).

    Article  CAS  Google Scholar 

  81. P. Garbeva, J. A. van Veen, and J. D. van Elsas, Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness, Annu. Rev. Phytopathol. 42, 243–270 (2004).

    Article  PubMed  CAS  Google Scholar 

  82. M. Mazzola, Assessment and management of soil microbial community structure for disease suppression, Annu. Rev. Phytopathol. 42, 35–59 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. P. J. Hunter, G. M. Petch, A. A. Calvo-Bado, T. R. Pettitt, N. Parsons, J. A. W. Morgan, and J. M. Whipps, Microbial characteristics of peats associated with suppression of damping-off disease caused by Pythium sylvaticum, Appl. Environ. Microbiol. 72, 6452–6460 (2006).

    Article  PubMed  CAS  Google Scholar 

  84. A. Mendoza-Mendoza, M. J. Pozo, D. Grzegorski, P. Martínez, J. M. García, V. Olmedo-Monfil, C. Cortés, C. Kenerley, and A. Herrera-Estrella, Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase, Proc. Natl. Acad. Sci. USA 100, 15965–15970 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. J. M. Steyaert, H. J. Ridgway, Y. Elad, and A. Stewart, Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma, N. Z. J. Crop Hort. Sci. 31, 281–291 (2003).

    Google Scholar 

  86. J. M. Steyaert, A. Stewart, M. Jaspers, M. Carpenter, and H. J. Ridgway, Co-expression of two genes, a chitinase (chit42) and proteinase (prb1), implicated in mycoparasitism by Trichoderma hamatum, Mycologia 96, 1245–1252 (2004).

    CAS  Google Scholar 

  87. P. K. Mukherjee, J. Latha, R. Hadar, and B. A. Horwitz, Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens, Appl. Environ. Microbiol. 70, 542–549 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. M. A. Carpenter, A. Stewart, and H. J. Ridgway, Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridization, FEMS Microbiol. Lett. 251, 105–112 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. P. G. Liu and Q. Yang, Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach, Res. Microbiol. 156, 416–423 (2005).

    Article  PubMed  CAS  Google Scholar 

  90. Trichoest, available at www.trichoderma.org (2006).

    Google Scholar 

  91. Broad Institute, available at www.broad.mit.edu/annotation/fungi/sclerotinia_sclerotiorum (2006).

    Google Scholar 

  92. C. W. Rogers, M. P. Challen, J. R. Green, and J. M. Whipps, Use of REMI and Agrobacterium-mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans, FEMS Microbiol. Lett. 241, 207–214 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Whipps, J.M. et al. (2007). CONTROL OF SCLEROTIAL PATHOGENS WITH THE MYCOPARASITE CONIOTHYRIUM MINITANS. In: Vurro, M., Gressel, J. (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5799-1_12

Download citation

Publish with us

Policies and ethics