Age determination of fishes based on periodic growth increments in otoliths has become a routine tool in fisheries science over the last century. Campana and Thorrold (2001) calculated that the ages of over 1 million fish were likely estimated in 2000 by fisheries scientists around the world. We probably have more demographic information on fishes than any other group of organisms on earth, with the exception of humans. The chronological records provided by otoliths are indeed unique. Growth increments in otoliths have now been validated to form on an annual basis in numerous species by many studies (Choat & Robertson 2002). Reef fish biologists were relatively slow to use annual increments in otoliths, perhaps because of the perceived lack of seasonality in tropical environments (Fowler 1995).


Inductively Couple Plasma Mass Spectrometry Coral Reef Fish Bluefin Tuna Laser Ablation Inductively Couple Plasma Mass Spectrometry Inductively Couple Plasma Mass Spectrometry Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aeschliman DB, Bajic SJ, Baldwin DP, Houk RS (2003) High-speed digital photographic study of an inductively coupled plasma during laser ablation: comparison of dried solution aerosols from a microconcentric nebulizer and solid particles from laser ablation. J Anal At Spectrom 18:1008–1014CrossRefGoogle Scholar
  2. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744PubMedCrossRefGoogle Scholar
  3. Andrews AH, Burton EJ, Kerr LA, Caillet GM, Coale KH, Lundstrom CC, Brown TA (2005) Bomb radiocarbon and lead-radium disequilibria in otoliths of bocaccio rockfish (Sebastes paucispinis): a determination of age and longevity for a difficult-to-age fish. Mar Freshwater Res 56:517–528CrossRefGoogle Scholar
  4. Arai N, Sakamoto W, Maeda K (1995) Analysis of trace elements in otoliths of Red Sea bream Pagrus major. Fish Sci 61:43–47Google Scholar
  5. Arai T, Kotake A, Lokman PM, Miller MJ, Tsukamoto KK (2004) Evidence of different habitat use by New Zealand freshwater eels Anguilla australis and A. dieffenbachii, as revealed by otolith microchemistry. Mar Ecol Prog Ser 266:213–225CrossRefGoogle Scholar
  6. Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 161:17–22CrossRefGoogle Scholar
  7. Arai T, Sato H, Ishii T, Tsukamoto K (2003) Alkaline earth metal and Mn distribution in otoliths of Anguilla spp. glass eels and elvers. Fish Sci 69:421–423CrossRefGoogle Scholar
  8. Arslan Z (2005) Analysis of fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry: aspects of precipitating otolith calcium with hydrofluoric acid for trace element determination. Talanta 65:1326–1334PubMedCrossRefGoogle Scholar
  9. Arslan Z, Paulson AJ (2003) Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry: an investigation of rare earth element signatures in otolith microchemistry. Anal Chim Acta 476:1–13CrossRefGoogle Scholar
  10. Arslan Z, Secor DH (2005) Analysis of trace transition elements and heavy metals in fish otoliths as tracers of habitat use by American eels in the Hudson River estuary. Estuaries 28:382–393CrossRefGoogle Scholar
  11. Bacon CR, Weber PK, Larsen KA, Reisenbichler R, Fitzpatrick JA, Wodden JL (2004) Migration and rearing histories of chinook salmon (Onchorhyncus tshawytscha) determined by ion microprobe Sr isotope and Sr/Ca transects of otoliths. Can J Fish Aquat Sci 61:2425–2439CrossRefGoogle Scholar
  12. Baker MS, Wilson CA (2001) Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico. Limnol Oceanogr 46:1819–1824Google Scholar
  13. Baker MS, Wilson CA, VanGent DL (2001) Testing assumptions of otolith radiometric aging with two longlived fishes from the northern Gulf of Mexico. Can J Fish Aquat Sci 58:1244–1252CrossRefGoogle Scholar
  14. Barbee NC, Swearer SE (2007) Characterizing natal source population signatures in the diadromous fish Galaxias maculatus, using embryonic otolith chemistry. Mar Ecol Prog Ser 343:273–282CrossRefGoogle Scholar
  15. Barnett-Johnson R, Ramos FC, Grimes CB, MacFarlane RB (2005) Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): opening avenues in fisheries science applications. Can J Fish Aquat Sci 62:2425–2430CrossRefGoogle Scholar
  16. Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714CrossRefGoogle Scholar
  17. Beck MW, Heck KL, Able KW, Childers DL, et al. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641CrossRefGoogle Scholar
  18. Begg GA, Cappo M, Cameron DS, Boyle S, Sellin MJ (1998) Stock discrimination of school mackerel, Scomberomorus queenslandicus, and spotted mackerel, Scomberomorus munroi, in coastal waters of eastern Australia by analysis of minor and trace elements in whole otoliths. Fish Bull (Wash DC) 96:653–666Google Scholar
  19. Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the Great Barrier Reef, Australia. Fish Res 72:253–270CrossRefGoogle Scholar
  20. Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525CrossRefGoogle Scholar
  21. Bian QZ, Koch J, Lindner H, Bberndt H, Hergenroder R, Niemax K (2005) Non-matrix matched calibration using near-IR femtosecond laser ablation inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 20:736–740CrossRefGoogle Scholar
  22. Bings NH, Bogaerts A, Broekaert JAC (2004) Atomic spectroscopy. Anal Chem 76:3313–3336PubMedCrossRefGoogle Scholar
  23. Blum JD, Taliaferro EH, Weisse MT, Holmes RT (2000) Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern USA. Biogeochemistry 49:87–101CrossRefGoogle Scholar
  24. Boiseau M, Juillet-Leclerc A (1997) H2O2 treatment of recent coral aragonite: oxygen and carbon isotopic implications. Chem Geol 143:171–180CrossRefGoogle Scholar
  25. Brophy D, Danilowicz BS (2002) Tracing populations of Atlantic herring (Clupea harengus L.) in the Irish and Celtic Seas using otolith microstructure. ICES J Mar Sci 59:1305–1313CrossRefGoogle Scholar
  26. Brophy D, Danilowicz BS, Jeffries TE (2003) The detection of elements in larval otoliths from Atlantic herring using laser ablation ICP-MS. J Fish Biol 63:990–1007CrossRefGoogle Scholar
  27. Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786CrossRefGoogle Scholar
  28. Brothers EB, McFarland WN (1981) Correlations between otolith microstructure, growth, and life history transitions in newly recruited French grunts [Haemulon flavolineatum (Desmarest), Haemulidae]. Rapp P v Reun Cons Int Explor Mer 187:369–374Google Scholar
  29. Buckel JA, Sharack BL, Zdanowicz VS (2004) Effects of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. J Fish Biol 64:1469–1484CrossRefGoogle Scholar
  30. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  31. Campana SE (2005) Otolith science entering the 21st century. Mar Freshwater Res 56:485–495CrossRefGoogle Scholar
  32. Campana SE, Chouinard GA, Hanson JM, Frechet A (1999) Mixing and migration of overwintering Atlantic cod (Gadus morhua) stocks near the mouth of the Gulf of St. Lawrence. Can J Fish Aquat Sci 56:1873–1881CrossRefGoogle Scholar
  33. Campana SE, Chouinard GA, Hanson JM, Frechet A, Brattey J (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res 46:343–357CrossRefGoogle Scholar
  34. Campana SE, Fowler AJ, Jones CM (1994) Otolith elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can J Fish Aquat Sci 51:1942–1950CrossRefGoogle Scholar
  35. Campana SE, Gagné JA (1995) Cod stock discrimination using ICPMS elemental assays of otoliths. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, South CarolinaGoogle Scholar
  36. Campana SE, Gagné JA, McLaren JW (1995) Elemental fingerprinting of fish otoliths using ID-ICPMS. Mar Ecol Prog Ser 122:115–120CrossRefGoogle Scholar
  37. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032CrossRefGoogle Scholar
  38. Campana SE, Oxenford HA, Smith JN (1993) Radiochemical determination of longevity in flyingfish Hirundichthys affinis using Th-228/Ra-228. Mar Ecol Prog Ser 100:211–219CrossRefGoogle Scholar
  39. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38CrossRefGoogle Scholar
  40. Campana SE, Thorrold SR, Jones CM, Günther D, Tubrett M, ongerich HL, Jackson S, Halden NM, Kalish JM, Piccoli P, de Pontual H, Troadec H, Panfili J, Secor DH, Severin KP, Sie SH, Thresher R, Teesdale WJ, Campbell JL (1997) Comparison of accuracy, precision, and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 54:2068–2079CrossRefGoogle Scholar
  41. Campana SE, Zwanenburg KCT, Smith JN (1990) 210Pb/226Ra determination of longevity in redfish. Can J Fish Aquat Sci 47:163–165CrossRefGoogle Scholar
  42. Chesney EJ, McKee BM, Blanchard T, Chan LH (1998) Chemistry of otoliths from juvenile menhaden Brevoortia patronus: evaluating strontium, strontium/calcium and strontium isotope ratios as environmental indicators. Mar Ecol Prog Ser 171:261–273CrossRefGoogle Scholar
  43. Chittaro PM, Fryer BJ, Sale PF (2004) Discrimination of French grunts (Haemulon flavolineatum Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. J Exp Mar Biol Ecol 308:169–183CrossRefGoogle Scholar
  44. Chittaro PM, Usseglio P, Fryer BJ, Sale PF (2005) Using otolith microchemistry of Haemulon flavolineatum (French Grunt) to characterize mangroves and coral reefs throughout Turneffe Atoll, Belize: difficulties at small spatial scales. Estuaries 28:373–381CrossRefGoogle Scholar
  45. Choat JH, Robertson DR (2002) Age-based studies. In: Sale PF (Ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San DiegoGoogle Scholar
  46. Christensen JN, Halliday AN, Lee D-C, Hall CM (1995) In situ Sr isotopic analysis by laser ablation. Earth Planet Sci Lett 136:79–85CrossRefGoogle Scholar
  47. Clarke LM, Friedland KD (2004) Influence of growth and temperature on strontium deposition in the otoliths of Atlantic salmon. J Fish Biol 65:744–759CrossRefGoogle Scholar
  48. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527PubMedCrossRefGoogle Scholar
  49. Denit K, Sponaugle S (2004) Growth variation, settlement, and spawning of gray snapper across a latitudinal gradient. Trans Am Fish Soc 133:1339–1355CrossRefGoogle Scholar
  50. de Pontual H, Lagardere F, Amara R, Bohn M, Ogor A (2003) Influence of ontogenetic and environmental changes in the otolith microchemistry of juvenile sole (Solea solea). J Sea Res 50:199–210CrossRefGoogle Scholar
  51. DeVries DA, Grimes CB, Prager MH (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fish Res 57:51–62CrossRefGoogle Scholar
  52. de Vries MC, Gillanders BM, Elsdon TS (2005) Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochim Cosmochim Acta 69:4061–4072CrossRefGoogle Scholar
  53. Dorval E, Jones CM, Hannigan R, van Montfrans J (2005) Can otolith chemistry be used for identifying essential seagrass habitats for juvenile spotted seatrout, Cynoscion nebulosus, in Chesapeake Bay? Mar Freshwater Res 56:645–654CrossRefGoogle Scholar
  54. Dove SG, Gillanders BM, Kingsford MJ (1996) An investigation of chronological differences in the deposition of trace metals in the otoliths of two temperature reef fishes. J Exp Mar Biol Ecol 205:15–33CrossRefGoogle Scholar
  55. Durrant SF, Ward NI (2005) Recent biological and environmental applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Anal At Spectrom 20:821–829CrossRefGoogle Scholar
  56. Edmonds JS, Caputi N, Morita M (1991) Stock discrimination by trace-element analysis of otoliths of orange roughy (Hoplostethus atlanticus), a deep-water marine teleost. Aust J Mar Freshwater Res 42:383–390CrossRefGoogle Scholar
  57. Edmonds JS, Lenanton RCJ, Caputi N, Morita M (1992) Trace elements in the otoliths of yellow-eye mullet (Aldrichetta forsteri) as an aid to stock identification. Fish Res 13:39–52CrossRefGoogle Scholar
  58. Edmonds JS, Moran MJ, Caputi N, Morita M (1989) Trace element analysis of fish sagittae as an aid to stock identification: pink snapper (Chrysophrys auratus) in Western Australian waters. Can J Fish Aquat Sci 46:50–54CrossRefGoogle Scholar
  59. Edmonds JS, Steckis RA, Moran MJ, Caputi N, Morita M (1999) Stock delineation of pink snapper and tailor from Western Australia by analysis of stable isotope and strontium/calcium ratios in otolith carbonate. J Fish Biol 55:243–259CrossRefGoogle Scholar
  60. Eggins SM, Kingsley LPJ, Shelley JMG (1998) Deposition and elemental fractionation processes during atmospheric pressure laser ablation sampling for analysis by ICP-MS. Appl Surf Sci 129:278–286CrossRefGoogle Scholar
  61. Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796–1808CrossRefGoogle Scholar
  62. Elsdon TS, Gillanders BM (2003) Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Mar Ecol Prog Ser 260:263–272CrossRefGoogle Scholar
  63. Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313:269–284CrossRefGoogle Scholar
  64. Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152CrossRefGoogle Scholar
  65. Farrell J, Campana SE (1996) Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comp Biochem Physiol A 115:103–109CrossRefGoogle Scholar
  66. Fassett JD, Paulson PJ (1989) Isotope dilution mass spectrometry for accurate elemental analysis. Anal Chem 61:643A–649ACrossRefGoogle Scholar
  67. Fisher R, Bellwood DR, Job SD (2000) Development of swimming abilities in reef fish larvae. Mar Ecol Prog Ser 202:163–173CrossRefGoogle Scholar
  68. FitzGerald JL, Thorrold SR, Bailey KM, Brown AL, Severin KP (2004) Elemental signatures in otoliths of larval walleye Pollock (Theragra chalcogramma) from the northeast Pacific Ocean. Fish Bull (Wash DC) 102:604–616Google Scholar
  69. Flik G, Verbost PM (1993) Calcium transport in fish gills and intestine. J Exp Biol 184:17–29Google Scholar
  70. Forrester GE, Swearer SE (2002) Trace elements in otoliths indicate the use of open-coast versus bay nursery habitats by juvenile California halibut. Mar Ecol Prog Ser 241:201–213CrossRefGoogle Scholar
  71. Fowler AJ (1995) Annulus formation in coral-reef fish. In: Secor DH, Dean JM, Campana SE (Eds) Recent developments in fish otolith research. University of South Carolina Press, Columbia, South CarolinaGoogle Scholar
  72. Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995a) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using solution-based ICPMS. Can J Fish Aquat Sci 52:1421–1430CrossRefGoogle Scholar
  73. Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995b) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441CrossRefGoogle Scholar
  74. Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70:4617–4634CrossRefGoogle Scholar
  75. Gaffey SJ, Bronnimann CE (1993) Effects of bleaching on organic and mineral phases in biogenic carbonates. J Sediment Petrol 63:752–754Google Scholar
  76. Gallahar NK, Kingsford MJ (1992) Patterns of increment width and strontium: calcium ratios in otoliths of juvenile rock blackfish, Girella elevata (M.). J Fish Biol 41:749–763CrossRefGoogle Scholar
  77. Gallahar NK, Kingsford MJ (1996) Factors influencing Sr/Ca ratios in otoliths of Girella elevata: An experimental investigation. J Fish Biol 48:174–186Google Scholar
  78. Gauldie RW (1996) Effects of temperature and vaterite replacement on the chemistry of metal ions in the otoliths of Oncorhynchus tshawytscha. Can J Fish Aquat Sci 53:2015–2026CrossRefGoogle Scholar
  79. Gauldie RW, Coote GC, Mulligan KP, West IF (1992) A chemical probe of the microstructural organization of fish otoliths. Comp Biochem Physiol A Comp Physiol 102:533–545CrossRefGoogle Scholar
  80. Gauldie RW, Fournier DA, Dunlop DE, Coote G (1986) Atomic emission and proton microprobe studies of the ion content of otoliths of chinook salmon aimed at recovering the temperature life history of individuals. Comp Biochem Physiol A Comp Physiol 84:607–616PubMedCrossRefGoogle Scholar
  81. Geffen AJ, Pearce NJG, Perkins WT (1998) Metal concentrations in fish otoliths in relation to body composition after laboratory exposure to mercury and lead. Mar Ecol Prog Ser 165:235–245CrossRefGoogle Scholar
  82. Gillanders BM (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish Bull (Wash DC) 99:410–419Google Scholar
  83. Gillanders BM (2002a) Connectivity between juvenile and adult fish populations: do adults remain near their recruitment estuaries? Mar Ecol Prog Ser 240:215–223CrossRefGoogle Scholar
  84. Gillanders BM (2002b) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679CrossRefGoogle Scholar
  85. Gillanders BM, Kingsford MJ (1996) Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar Ecol Prog Ser 141:13–20CrossRefGoogle Scholar
  86. Gillanders BM, Kingsford MJ (2000) Elemental fingerprints of otoliths of fish may distinguish estuarine 'nursery' habitats. Mar Ecol Prog Ser 201:273–286CrossRefGoogle Scholar
  87. Gillanders BM, Kingsford MJ (2003) Spatial variation in elemental composition of otoliths of three species of fish (family Sparidae). Est Coast Shelf Sci 57:1049–1064CrossRefGoogle Scholar
  88. Gillanders BM, Sanchez-Jerez P, Bayle-Sempere J, Ramos-Espla A (2001) Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations? J Fish Biol 59:350–363CrossRefGoogle Scholar
  89. Grady JR, Johnson AG, Sanders M (1989) Heavy metal content in otoliths of king mackerel (Scomberomorus cavalla) in relation to body length and age. Contrib Mar Sci 31:17–24Google Scholar
  90. Gray AL (1985) Solid sample introduction by laser ablation for inductively coupled plasma source-mass spectrometry. The Analyst 110:551–556CrossRefGoogle Scholar
  91. Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52PubMedCrossRefGoogle Scholar
  92. Guido P, Omori M, Katayama S, Kimura K (2004) Classification of juvenile rockfish, Sebastes inermis, to Zostera and Sargassum beds, using the macrostructure and chemistry of otoliths. Mar Biol 145:1243–1255CrossRefGoogle Scholar
  93. Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20,000 years ago: modulating inter-hemispheric climate change. Science 263:663–665PubMedCrossRefGoogle Scholar
  94. Gunn JS, Harrowfield IR, Proctor CH, Thresher RE (1992) Electron probe microanalysis of fish otoliths: evaluation of techniques for studying age and stock discrimination. J Exp Mar Biol Ecol 158:1–36CrossRefGoogle Scholar
  95. Günther D, Frischknecht R, Heinrich CA, Kahlert HJ (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. J Anal At Spectrom 12:939–944CrossRefGoogle Scholar
  96. Günther D, Heinrich CA (1999) Enhanced sensitivity in laser ablation-ICP mass spectrometry using heliumargon mixtures as aerosol carrier. J Anal At Spectrom 14:1363–1368CrossRefGoogle Scholar
  97. Gussone N, Böhm F, Eisenhauer A, Dietzel M, Heuser A, Teichert BAA, Reitnner J, Wörheide G, Dullo WC (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494CrossRefGoogle Scholar
  98. Gussone N, Einsenhauer A, Heuser A, Dietzel M, Bock B, Böhm F, Spero HJ, Lea DW, Bijma J, Nägler TF (2004) δ44Ca, δ18O and Mg/Ca reveal Caribbean Sea surface temperature and salinity fluctuations during the Pliocene closure of the Central-American gateway. Earth Planet Sci Lett 227:201–214CrossRefGoogle Scholar
  99. Halliday AN, Lee D-C, Christensen JN, Rehkamper M, Yi W, Luo X, Hall CM, Ballentine CJ, Pettkke T, Stirling C (1998) Applications of multi-collector ICPMS to cosmochemistry, geochemistry, and paleoceanography. Geochim Cosmochim Acta 62:919–940CrossRefGoogle Scholar
  100. Halpern BS (2004) Are mangroves a limiting resource for two coral reef fishes? Mar Ecol Prog Ser 272:93–98CrossRefGoogle Scholar
  101. Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian water: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273CrossRefGoogle Scholar
  102. Hanson PJ, Koenig CC, Zdanowicz VS (2004) Elemental composition of otoliths used to trace estuarine habitats of juvenile gag Mycteroperca microlepis along the west coast of Florida. Mar Ecol Prog Ser 267:253–265CrossRefGoogle Scholar
  103. Hanson PJ, Zdanowicz VS (1999) Elemental composition of otoliths from Atlantic croaker along an estuarine pollution gradient. J Fish Biol 54:656–668CrossRefGoogle Scholar
  104. Harlan JA, Swearer SE, Leben RR, Fox CA (2002) Surface circulation in a Caribbean island wake. Cont Shelf Res 22:417–434CrossRefGoogle Scholar
  105. Hedges KJ, Ludsin SA, Fryer BJ (2004) Effects of ethanol preservation on otolith microchemistry. J Fish Biol 64:923–937CrossRefGoogle Scholar
  106. Hobbs JA, Yin QZ, Burton J, Bennett WA (2005) Retrospective determination of natal habitats for an estuarine fish with otolith strontium isotope ratios. Mar Freshwater Res 56:655–660CrossRefGoogle Scholar
  107. Hoff GR, Fuiman LA (1993) Morphometry and composition of red drum otoliths: changes associated with temperature, somatic growth rate, and age. Comp Biochem Physiol A 106:209–219CrossRefGoogle Scholar
  108. Hoff GR, Fuiman LA (1995) Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull Mar Sci 56:578–591Google Scholar
  109. Horlick G, Montaser A (1998) Analytical characteristics of ICPMS. In: Montaser A (Ed) Inductively coupled plasma mass spectrometry. Wiley-VHC, New YorkGoogle Scholar
  110. Humphreys RL, Campana SE, DeMartini E (2005) Otolith elemental fingerprints of juvenile Pacific swordfish Xiphias gladius. J Fish Biol 66:1660–1670CrossRefGoogle Scholar
  111. Jeffries TE, Jackson SE, Longerich HP (1998) Application of a frequency quintupled Nd:YAG source (λ = 213 nm) for laser ablation inductively coupled plasma mass spectrometric analysis of minerals. J Anal At Spectrom 13:935–940CrossRefGoogle Scholar
  112. Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318PubMedCrossRefGoogle Scholar
  113. Kalish JM (1989) Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. J Exp Mar Biol Ecol 132:151–178CrossRefGoogle Scholar
  114. Kalish JM (1990) Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and nonanadromous salmonids. Fish Bull (Wash DC) 88:657–666Google Scholar
  115. Kalish JM (1991) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137–159CrossRefGoogle Scholar
  116. Kalish JM (2001) Use of the bomb radiocarbon chronometer to validate fish age. Final Report FRDC Project 93/109, Fisheries Research and Development Corporation, Canberra, AustraliaGoogle Scholar
  117. Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280–2292CrossRefGoogle Scholar
  118. Kennedy BP, Folt CL, Blum JD, Chamberlain CP (1997) Natural isotope markers in salmon. Nature 387:766–767CrossRefGoogle Scholar
  119. Kraus RT, Secor DH (2004a) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85–106CrossRefGoogle Scholar
  120. Kraus RT, Secor DH (2004b) Dynamics of white perch Morone americana population contingents in the Patuxent River estuary, Maryland USA. Mar Ecol Prog Ser 279:247–259CrossRefGoogle Scholar
  121. Lange N, Swearer S, Sturner WQ (1994) Human postmortem interval estimation from vitreous potassium: an analysis of original data from six different studies. Forensic Sci Int 66:159–174PubMedCrossRefGoogle Scholar
  122. Lea DW (2003) Elemental and isotopic proxies of marine temperatures. In: Elderfield H (Ed) The oceans and marine geochemistry. Elsevier-Pergamon, OxfordGoogle Scholar
  123. Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379CrossRefGoogle Scholar
  124. Limburg KE (1995) Otolith strontium traces environmental history of sub-yearling American shad Alosa sapidissima. Mar Ecol Prog Ser 119:25–35CrossRefGoogle Scholar
  125. Limburg KE (2001) Through the gauntlet again: demographic restructuring of American shad by migration. Ecology 82:1584–1596CrossRefGoogle Scholar
  126. Long AM, Wang WX (2005) Metallothionein induction and bioaccumulation kinetics of Cd and Ag in a marine fish Terapon jarbua challenged with dietary and waterborne Ag and Cu. Mar Ecol Prog Ser 291:215–226CrossRefGoogle Scholar
  127. Love KM, Woronow A (1991) Chemical changes induced in aragonite using treatments for the destruction of organic material. Chem Geol 93:291–301CrossRefGoogle Scholar
  128. Marriot CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of δ 7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624CrossRefGoogle Scholar
  129. Martin GB, Thorrold SR (2005) Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Mar Ecol Prog Ser 293:223–232CrossRefGoogle Scholar
  130. Martin GB, Thorrold SR, Jones CM (2004) Temperature and salinity effects on strontium incorporation in otolith of larval spot (Leiostomus xanthurus). Can J Fish Aquat Sci 61:34–42CrossRefGoogle Scholar
  131. Martin PA, Lea DW (2002) A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca. Geochem Geophys Geosyst 3:doi:10.1029/2001GC000280Google Scholar
  132. McCulloch M, Cappo M, Aumend J, Muller W (2005) Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar Freshwater Res 56:637–644CrossRefGoogle Scholar
  133. McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia and the 1982–83 El Niño. Geochim Cosmochim Acta 58:2747–2754CrossRefGoogle Scholar
  134. Millar RB (1990) Comparison of methods for estimating mixed stock fishery composition. Can J Fish Aquat Sci 47:2235–2241CrossRefGoogle Scholar
  135. Miller JA, Shanks AL (2004) Evidence for limited larval dispersal in black rockfish (Sebastes melanops): implications for population structure and marine-reserve design. Can J Fish Aquat Sci 61:1723–1735CrossRefGoogle Scholar
  136. Milton DA, Chenery SR (1998) The effect of otolith storage methods on the concentrations of elements detected by laser-ablation ICPMS. J Fish Biol 53:785–794CrossRefGoogle Scholar
  137. Milton DA, Chenery SR (2001a) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65CrossRefGoogle Scholar
  138. Milton DA, Chenery SR (2001b) Can otolith chemistry detect the population structure of the shad hilsa Tenualosa ilisha? Comparison with the results of genetic and morphological studies. Mar Ecol Prog Ser 222:239–251CrossRefGoogle Scholar
  139. Milton DA, Chenery SR (2003) Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can J Fish Aquat Sci 60:1376–1385CrossRefGoogle Scholar
  140. Milton DA, Chenery SR, Farmer MJ, Blaber SJM (1997) Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry. Mar Ecol Prog Ser 153:283–291CrossRefGoogle Scholar
  141. Milton DA, Short SA, O’Neill MF, Blaber SJM (1995) Aging of 3 species of tropical snapper (Lutjanidae) from the Gulf of Carpenteria, Australia, using radiometry and otolith ring counts. Fish Bull (Wash DC) 93:103–115Google Scholar
  142. Milton DA, Tenakanai CD, Chenery SR (2000) Can the movements of barramundi in the Fly River region, Papua New Guinea be traced in their otoliths? Est Coast Shelf Sci 50:855–868CrossRefGoogle Scholar
  143. Montaser A, Minnich MG, McLean JA, Liu H (1998) Sample introduction in ICPMS. In: Montaser A (Ed) Inductively coupled plasma mass spectrometry. Wiley-VHC, New YorkGoogle Scholar
  144. Morris JA, Rulifson RA, Toburen LH (2003) Life history strategies of striped bass, Morone saxatilis, populations inferred from otolith microchemistry. Fish Res 62:53–63CrossRefGoogle Scholar
  145. Mugiya Y, Hakomori T, Hatsutori K (1991) Trace metal incorporation into otoliths and scales in the goldfish, Carassius auratus. Comp Biochem Physiol C 99:327–332CrossRefGoogle Scholar
  146. Mugiya Y, Satoh C (1997) Strontium accumulation in slow-growing otoliths in the goldfish Carassius auratus. Fish Sci 63:361–364Google Scholar
  147. Mugiya Y, Uchimura T (1989) Otolith resorption induced by anaerobic stress in goldfish, Carassius auratus. J Fish Biol 35:813–818CrossRefGoogle Scholar
  148. Mulligan TJ, Martin FD, Smucker RA, Wright DA (1987) A method of stock identification based on the elemental composition of striped bass Morone saxatilis (Walbaum) otoliths. J Exp Mar Biol Ecol 114:241–248CrossRefGoogle Scholar
  149. Munro AR, McMahon TE, Ruzycki JR (2005) Natural chemical markers identify source and date of introduction of an exotic species: lake trout (Salvelinus namaycush) in Yellowstone Lake. Can J Fish Aquat Sci 62:79–87CrossRefGoogle Scholar
  150. Nagelkerken I, van der Velde G (2004) Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds? Mar Ecol Prog Ser 274:143–151CrossRefGoogle Scholar
  151. Nagelkerken I, van der Velde G, Gorissen MW, Meijer GJ, van't Hof T, den Hartog C (2000) Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Est Coast Shelf Sci 51:31–44CrossRefGoogle Scholar
  152. Nägler TF, Eisenhauer A, Müller A, Hemleben C, Kramers J (2000) The δ44Ca–temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1:doi:10.1029/2000GC000091Google Scholar
  153. Okumura M, Kitano Y (1986) Coprecipitation of alkali metal ions with calcium carbonate. Geochim Cosmochim Acta 50:49–58CrossRefGoogle Scholar
  154. Outridge PM, Chenery SR, Babaluk JA, Reist JD (2002) Analysis of geological Sr isotope markers in fish otoliths with subannual resolution using laser ablation-multicollector-ICP-mass spectrometry. Environ Geol 42:891–899CrossRefGoogle Scholar
  155. Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173:1124–1127CrossRefGoogle Scholar
  156. Patterson HM, Kingsford MJ, McCulloch MT (2004a) Elemental signatures of Pomacentrus coelestis otoliths at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239CrossRefGoogle Scholar
  157. Patterson HM, Kingsford MJ, McCulloch MT (2004b) The influence of oceanic and lagoonal plume waters on otolith chemistry. Can J Fish Aquat Sci 61:898–904CrossRefGoogle Scholar
  158. Patterson HM, Kingsford MJ, McCulloch MT (2005) Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs 24:222–229CrossRefGoogle Scholar
  159. Patterson HM, McBride RS, Julien N (2004c) Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Mar Biol 144:855–862CrossRefGoogle Scholar
  160. Patterson HM, Swearer SE (2007) Long-distance dispersal and local retention of larvae as mechanisms of recruitment in an island population of a coral reef fish. Austral Ecol 32:122–130CrossRefGoogle Scholar
  161. Patterson HM, Thorrold SR, Shenker JM (1999) Analysis of otolith chemistry in Nassau grouper (Epinephelus striatus) from the Bahamas and Belize using solution-based ICP-MS. Coral Reefs 18:171–178CrossRefGoogle Scholar
  162. Proctor CH, Thresher RE (1998) Effects of specimen handling and otolith preparation on concentration of elements in fish otoliths. Mar Biol 131:681–694CrossRefGoogle Scholar
  163. Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyii: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526CrossRefGoogle Scholar
  164. Quinn TJ (1993) A review of homing and straying of wild and hatchery-produced salmon. Fish Res 18:29–44CrossRefGoogle Scholar
  165. Radtke RL (1985) Recruitment parameters resolved from structural and chemical components of juvenile Dascyllus albisella otoliths. Proc 6th Int Coral Reef Congr 5:397–401Google Scholar
  166. Radtke RL (1989) Strontium-calcium concentration ratios in fish otoliths as environmental indicators. Comp Biochem Physiol A 92:198–194Google Scholar
  167. Radtke RL, Kinzie RA III (1996) Evidence of a marine larval stage in endemic Hawaiian stream gobies from isolated high-elevated locations. Trans Am Fish Soc 125:613–621CrossRefGoogle Scholar
  168. Radtke RL, Kinzie RA III, Folsom SD (1988) Age at recruitment of Hawaiian [USA] freshwater gobies. Environ Biol Fish 23:205–214CrossRefGoogle Scholar
  169. Radtke RL, Townsend DW, Folsom SD, Morrison MA (1990) Strontium: calcium concentration ratios in otoliths of herring larvae as indicators of environmental histories. Environ Biol Fish 27:51–62CrossRefGoogle Scholar
  170. Rooker JR, Secor DH, Zdanowicz VS, de Metrio G, Relini LO (2003) Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish Oceanogr 12:75–84CrossRefGoogle Scholar
  171. Rooker JR, Secor DH, Zdanowicz VS, Itoh T (2001a) Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Mar Ecol Prog Ser 218:275–282CrossRefGoogle Scholar
  172. Rooker JR, Zdanowicz VS, Secor DH (2001b) Chemistry of tuna otoliths: assessment of base composition and postmortem handling effects. Mar Biol 139:35–43CrossRefGoogle Scholar
  173. Rosenheim BE, Swart PK, Thorrold SR, Eisenhauer A, Willenz P (2005) Salinity change in the subtropical Atlantic: secular increase and teleconnections to the North Atlantic Oscillation. Geophys Res Lett 32:L02603, doi:10.1029/2004GL021499Google Scholar
  174. Rosenthal Y, Field PM, Sherrell RM (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal Chem 71:3248–3253CrossRefGoogle Scholar
  175. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466PubMedCrossRefGoogle Scholar
  176. Russo RE, Mao X, Gonzales JJ, Mao SS (2002) Femtosecond laser ablation ICP-MS. J Anal At Spectrom 17:1072–1075CrossRefGoogle Scholar
  177. Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis G, Sheehy M, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential use as natural tags. Mar Ecol Prog Ser 297:273–281CrossRefGoogle Scholar
  178. Ruttenberg BI, Warner RR (2006) Spatial variation in the chemical composition of natal otoliths from a reef fish in the Galápagos Islands. Mar Ecol Prog Ser 328:225–236CrossRefGoogle Scholar
  179. Sandin SA, Regetz J, Hamilton SL (2005) Testing larval fish dispersal hypotheses using maximum likelihood analysis of otolith chemistry data. Mar Freshwater Res 56:725–734CrossRefGoogle Scholar
  180. Searcy SP, Sponaugle S (2001) Selective mortality during the larval-juvenile transition in two coral reef fishes. Ecology 82:2452–2470Google Scholar
  181. Secor DH (1992) Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass Morone saxatilis. Fish Bull (Wash DC) 90:798–806Google Scholar
  182. Secor DH, Campana SE, Zdanowicz VS, Lam JWH, Yang L, Rooker JR (2002) Inter-laboratory comparison of Atlantic and Mediterranean bluefin tuna otolith microconstituents. ICES J Mar Sci 59:1294–1304CrossRefGoogle Scholar
  183. Secor DH, Henderson-Arzapalo A, Piccoli PM (1995) Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J Exp Mar Biol Ecol 192:15–33CrossRefGoogle Scholar
  184. Secor DH, Piccoli PM (1996) Age- and sex-dependent migrations of striped bass in the Hudson River as determined by chemical microanalysis of otoliths. Estuaries 19:778–793CrossRefGoogle Scholar
  185. Secor DH, Rooker JR, Zlokovitz E, Zdanowicz VS (2001) Identification of riverine, estuarine, and coastal contingents of Hudson River striped bass based upon otolith elemental fingerprints. Mar Ecol Prog Ser 211:245–253CrossRefGoogle Scholar
  186. Secor DH, Zdanowicz VS (1998) Otolith microconstituent analysis of juvenile bluefin tuna (Thunnus thynnus) from the Mediterranean Sea and Pacific Ocean. Fish Res 36:251–256CrossRefGoogle Scholar
  187. Shen GT, Cole JE, Lea DW, Linn LJ, McConnaughey TA, Fairbanks RG (1992) Surface ocean variability at Galapagos from 1936–1982: calibration of geochemical tracers in corals. Paleoceanography 5:563–588CrossRefGoogle Scholar
  188. Shen KN, Tzeng WN (2002) Formation of a metamorphosis check in otolith of the amphidromous goby Sicyopterus japonicus. Mar Ecol Prog Ser 228:205–211CrossRefGoogle Scholar
  189. Shiao JC, Tzeng CS, Leu CL, Chen FC (1999) Enhancing the contrast and visibility of daily growth increments in fish otoliths etched by proteinase K buffer. J Fish Biol 54:302–309CrossRefGoogle Scholar
  190. Smith DC, Fenton GE, Robertson SG, Short SA (1995) Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing. Can J Fish Aquat Sci 52:391–401CrossRefGoogle Scholar
  191. Smith SV, Buddemeier RW, Redalje RD, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407PubMedCrossRefGoogle Scholar
  192. Spencer K, Schafer DJ, Gauldie RW, DeCarlo EH (2000) Stable lead isotope ratios from distinct anthropogenic sources in fish otoliths: a potential nursery stock marker. Comp Biochem Physiol A 127:273–284CrossRefGoogle Scholar
  193. Stoll HM, Encinar JR, Alonso JIG, Rosenthal Y, Probert I, Klaas C (2001) A first look at paleotemperature prospects from Mg in coccolith carbonate: cleaning techniques and culture measurements. Geochem Geophys Geosyst 2:doi:10.1029/2000GC000144Google Scholar
  194. Stransky C, Garbe-Schonberg CD, Günther D (2005) Geographic variation and juvenile migration in Atlantic redfish inferred from otolith microchemistry. Mar Freshwater Res 56:677–691CrossRefGoogle Scholar
  195. Sturgeon RE, Willie SN, Yang L, Greenberg R, Spatz RO, Chen Z, Scriver C, Clancy V, Lam JW, Thorrold S (2005) Certification of a fish otolith reference material in support of quality assurance for trace element analysis. J Anal At Spectrom 20:1067–1071CrossRefGoogle Scholar
  196. Swart PK, Thorrold S, Rubenstone J, Rosenheim B, Harrison CGA, Grammer M, Latkoczy C (2002) Intraannual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17:1045, doi:10.1029/2000PA000622Google Scholar
  197. Swearer SE, Caselle JE, Lea DW, Warner RR (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802CrossRefGoogle Scholar
  198. Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Est Coast Shelf Sci 56:1111–1123CrossRefGoogle Scholar
  199. Swearer SE, Shima JS, Hellberg ME, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271Google Scholar
  200. Thorrold SR, Hare JA (2002) Otolith applications in reef fish ecology. In: Sale PF (Ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San DiegoGoogle Scholar
  201. Thorrold SR, Jones CM, Campana SE (1997) Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker Micropogonias undulatus. Limnol Oceanogr 42:102–111Google Scholar
  202. Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (1998a) Trace element signatures in otoliths record natal river of juvenile American shad Alosa sapidissima. Limnol Oceanogr 43:1826–1835Google Scholar
  203. Thorrold SR, Jones CM, Swart PK, Targett TE (1998b) Accurate classification of juvenile weakfish Cynoscion regalis to estuarine nursery areas based on chemical signatures in otoliths. Mar Ecol Prog Ser 173:253–265CrossRefGoogle Scholar
  204. Thorrold SR, Jones GP, Planes S, Hare JA (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197CrossRefGoogle Scholar
  205. Thorrold SR, Latkoczy C, Swart PK, Jones CM (2001) Natal homing in a marine fish metapopulation. Science 291:297–299PubMedCrossRefGoogle Scholar
  206. Thorrold SR, Shuttleworth S (2000) In situ analysis of trace elements and isotope ratios in fish otoliths using laser ablation sector field inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 57:1232–1242CrossRefGoogle Scholar
  207. Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron-probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull (Wash DC) 92:817–840Google Scholar
  208. Townsend DW, Radtke RL, Corwin S, Libby DA (1992) Strontium calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. J Exp Mar Biol Ecol 160:131–140CrossRefGoogle Scholar
  209. Townsend DW, Radtke RL, Malone DP, Wallinga JP (1995) Use of otolith strontium : calcium ratios for hindcasting larval cod Gadus morhua distributions relative to water masses on Georges Bank. Mar Ecol Prog Ser 119:37–44CrossRefGoogle Scholar
  210. Townsend DW, Radtke RL, Morrison MA, Folsom SD (1989) Recruitment implications of larval herring overwintering distributions in the Gulf of Maine, [USA] inferred using a new otolith technique. Mar Ecol Prog Ser 55:1–13CrossRefGoogle Scholar
  211. Tsukamoto K, Nakai I, Tesch WV (1998) Do all freshwater eels migrate? Nature 396:635–636CrossRefGoogle Scholar
  212. Vázquez Peláez M, Costa-Fernández JM, Sanz-Medel A (2002) Critical comparison between quadrupole and time-of-flight inductively coupled plasma mass spectrometers for isotope ratio measurements in elemental speciation. J Anal At Spectrom 17:950–957CrossRefGoogle Scholar
  213. Victor BC (1983) Recruitment and population dynamics of a coral reef fish. Science 219:419–420PubMedCrossRefGoogle Scholar
  214. Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130CrossRefGoogle Scholar
  215. Warner RR, Cowen RK (2002) Local retention of production in marine populations: evidence, mechanisms, and consequences. Bull Mar Sci 70:251–271Google Scholar
  216. Warner RR, Swearer SE, Caselle JE, Sheehy M, Paradis G (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542Google Scholar
  217. Weber PK, Hutcheon ID, McKeegan KD, Ingram BL (2002) Otolith sulfur isotope method to reconstruct salmon (Onchorhynchus tshawytscha) life history. Can J Fish Aquat Sci 59:587–591CrossRefGoogle Scholar
  218. Wells BK, Thorrold SR, Jones CM (2000) Geographic variation in trace element composition of juvenile weakfish (Cynoscion regalis) scales. Trans Am Fish Soc 129:889–900CrossRefGoogle Scholar
  219. Wieser ME, Buhl D, Bouman C, Schweiters J (2004) High precision calcium isotope ratio measurements using magnetic sector multiple collector inductively coupled plasma mass spectrometer. J Anal At Spectrom 19:844–851CrossRefGoogle Scholar
  220. Willie S, Metser Z, Sturgeon RE (2005) Isotope ratio precision with transient sample introduction using ICP orthogonal acceleration time-of-flight mass spectrometry. J Anal At Spectrom 20:1358–1364CrossRefGoogle Scholar
  221. Woodhead J, Swearer S, Hergt J, Maas R (2005) In situ Sr-isotope analysis of carbonates by LA-MC-ICPMS: interference corrections, high spatial resolution and an example from otolith studies. J Anal At Spectrom 20:22–27CrossRefGoogle Scholar
  222. Yoshinaga J, Morita M, Edmonds JS (1999) Determination of copper, zinc, cadmium and lead in a fish otolith certified reference material by isotope dilution inductively coupled plasma mass spectrometry using off-line solvent extraction. J Anal At Spectrom 14:1589–1592CrossRefGoogle Scholar
  223. Yoshinaga J, Nakama A, Morita M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97CrossRefGoogle Scholar
  224. Zacherl DC, Paradis G, Lea DW (2003) Barium and strontium uptake into larval protoconchs and statoliths of the marine neogastropod Kelletii kelletii. Geochim Cosmochim Acta 67:4091–4099CrossRefGoogle Scholar
  225. Zlokovitz E, Secor DH, Piccoli PM (2003) Patterns of migration in Hudson River striped bass as determine by otolith microchemistry. Fish Res 63:245–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Simon R. Thorrold
    • 1
  • Stephen E. Swearer
    • 2
  1. 1.Biology Department MS 50Woods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Department of ZoologyThe University of MelbourneMelbourneAustralia

Personalised recommendations