Skip to main content

Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils

  • Conference paper

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 102))

Abstract

Within rhizobia, two species nodulating chickpea, Mesorhizobium ciceri and Mesorhizobium mediterraneum, are known as good phosphate solubilizers. For this reason, we have analysed the ability to solubilize phosphate of a wide number of strains isolated from Cicer arietinum growing in several soils in Spain. The aim of this work was to analyse microbial populations nodulating chickpea, that are able to solubilize phosphates, using molecular techniques. In the present work we analyzed 19 strains isolated from effective nodules of C. arietinum growing in three soils from the North of Spain. Nineteen strains showed ability to solubilize phosphate in YED-P medium. These strains were separated into 4 groups according to the results obtained by 879F-RAPD fingerprinting. The 16S rDNA sequencing of a representative strain from each group allowed the identification of strains as belonging to the genus Mesorhizobium. Strains from groups I and II showed a 99.4% and 99.2% similarity with M. mediterraneum UPM-CA142T, respectively. The strains from group III were related to M. tianshanense USDA 3592T at a 99.4% similarity level. Finally, the strain from group IV was related to M. ciceri USDA 3383T with a 99.3% similarity. The LMW RNA profiles confirmed these results. Strains from groups I and II showed an identical LMW RNA profile to that of M. mediterraneum UPM-CA142T; the profile of strains from group III was identical to that of M. tianshanense USDA 3592T and the profile of strains from group IV was identical to that of M. ciceri USDA 3383T. Different 879F-RAPD patterns were obtained for strains of the group I, group II and the M. mediterraneum type strain (UPM-CA142T). The 879-RAPD patterns obtained for group III also differed from the pattern shown by M. tianshanense USDA 3592T. Finally, the patterns between group IV and M. ciceri USDA 3383T were also different. These results suggest that groups I and II may be subspecies of M. mediterraneum, group III a subspecies of M. tianshanense and group IV a subspecies of M. ciceri. Nevertheless, more studies are needed to establish the taxonomic status of strains isolated in this study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergersen FJ 1961 The growth of Rhizobium in synthetic media. Aust J Biol Sci 14, 349–360.

    CAS  Google Scholar 

  • Beringer JE 1974 R factors transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.

    PubMed  CAS  Google Scholar 

  • Bidle KD and Fletcher M 1995 Comparison of free-living and particle-associated bacterial communities in the Chesapake Bay by stable low-molecular-weight RNA analysis. Appl Environ Microbiol 61, 944–952.

    PubMed  CAS  Google Scholar 

  • Chen WX, Li GS, Qi YL, Wang ET, Yuan HL and Li JL 1991 Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41, 275–280.

    Google Scholar 

  • Chen W, Wang E, Wang S, Li Y, Chen X and Li Y 1995 Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45, 153–159.

    PubMed  CAS  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, de Vos P, Mergeay M and Vandamme P 2001 Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51, 1729–1735.

    PubMed  CAS  Google Scholar 

  • Cruz-Sánchez JM, Velázquez E, Mateos P and Martínez-Molina E 1997 Enhancement of resolution of low molecular weight RNA profiles by staircase electrophoresis. Electrophoresis 18, 1909–1911.

    Article  PubMed  Google Scholar 

  • de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B and Gillis M 1998 Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48, 369–382.

    PubMed  Google Scholar 

  • de la Puente-Redondo VA, García del Blanco N, Gutiérrez Martín CB, García-Peña FJ and Rodríguez Ferri EF 2000 Comparison of different PCR approaches for typing of Francisella tularensis strains. J Clin Microbiol 38, 1016–1022.

    PubMed  Google Scholar 

  • Fischer-Le Saux M, Viallard V, Brunel B, Normand P and Boemare NE 1999 Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperate subsp. nov. and P. asymbiotica sp. nov. Int J Syst Bacteriol 49, 1645–1656.

    PubMed  Google Scholar 

  • Haas H, Budowle B and Weiler G 1994 Horizontal polyacrylamide gel electrophoresis for the separation of DNA fragments. Electrophoresis 15, 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Halder AK, Mishra AK and Chakrabartty PK 1990 Solubilization of phosphatic compounds by Rhizobium. Indian J Microbiol 30, 311–314.

    Google Scholar 

  • Herrera-Cervera JA, Caballero-Mellado J, Laguerre G, Tichy HV, Requena N, Amarger N, Martínez-Romero E, Olivares J and Sanjuán J 1999 At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol Ecol 30, 87–97.

    Article  CAS  Google Scholar 

  • Höfle MG 1988 Identification of bacteria by low molecular weight RNA profiles: a new chemotaxonomic approach. J Microbiol Methods 8, 235–248.

    Article  Google Scholar 

  • Igual JM, Valverde A, Rivas R, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Cervantes E, Velázquez E 2003 Genomic fingerprinting of Frankia strains by PCR-based techniques. Assessment of a primer based on the sequence of 16S rRNA gene of Escherichia coli. Plant Soil 254, 115–123.

    Article  CAS  Google Scholar 

  • Jarabo-Lorenzo A, Velázquez E, Pérez-Galdona R, Vega-Hernández MC, Martínez-Molina E, Mateos PF, Vinuesa P, Martínez-Romero E and León-Barrios M 2000 Restriction fragment length polymorphism analysis of PCR-amplified 16S rDNA and low molecular weight RNA profiling in the characterisation of rhizobial isolates from shrubby legumes endemic to the Canary Islands. Syst Appl Microbiol 23, 4–18.

    Google Scholar 

  • Jarvis BDW, Pankhurst CE and Patel JJ 1982 Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32, 378–380.

    Google Scholar 

  • Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC and Gillis M 1998 Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47, 895–898.

    Google Scholar 

  • Jonhson FJ 1990 Detection method of nitrogen (total) in fertilizers. In Methods of analysis of the Association of Official Analytical Chemists. Ed. K Elrich. pp. 17–19. Association of Official Analytical Chemists, USA.

    Google Scholar 

  • Kimura M 1980 A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB and Nei M 2001 Molecular evolutionary genetics analysis software. Arizona State University, Tempe, Arizona. USA.

    Google Scholar 

  • Moulin L, Munive A, Dreyfus B and Boivin-Masson C 2001 Nodulation of legumes by members of β-subclass of Proteobacteria. Nature 411, 948–950.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura LK, Roberts MS and Cohan FM 1999 Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. Int J Syst Bacteriol 49, 1211–1215.

    PubMed  CAS  Google Scholar 

  • Nour SH, Fernández MP, Normand P and Cleyet-Marel JC 1994 Rhizobium ciceri, sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44, 511–522.

    PubMed  CAS  Google Scholar 

  • Nour SH, Cleyet-Marel JC, Normand P and Fernandez MP 1995 Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45, 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y and Murooka Y 1999 Phylogenetic position of Mesorhizobium huakuii subsp. rengei, a symbiont of Astragalus sinicus cv. Jpn J Biosci Bioeng 87, 49–55.

    Article  CAS  Google Scholar 

  • Palomo JL, Velázquez E, Mateos PF, García-Benavides P and Martínez-Molina E 2000 Rapid identification of Clavibacter michiganensis subspecies sepedonicus based on the stable low molecular weight RNA (LMW RNA) profiles. Eur J Plant Pathol 106, 789–793.

    Article  CAS  Google Scholar 

  • Pearson WR and Lipman DJ 1988 Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E and Velázquez E 2001 Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33, 103–110.

    Article  CAS  Google Scholar 

  • Perret X, Staehelin C and Broughton WJ 2000 Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64, 180–201.

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Velázquez E, Valverde A, Mateos PF and Martínez-Molina E 2001 A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis 22, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  • Rivas R, Velázquez E, Palomo JL, Mateos P, García-Benavides P and Martínez-Molina E 2002a Rapid identification of Clavibacter michiganensis subspecies sepedonicus using two primers random amplified polymorphic DNA (TP-RAPD) fingerprints. Eur J Plant Pathol 108, 179–184.

    Article  CAS  Google Scholar 

  • Rivas R, Velázquez E, Willems A, Vizcaíno N, Subba-Rao NS, Mateos PF, Gillis M, Dazzo FB and Martínez-Molina E 2002b A new species of Devosia that forms a nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L. f.) Druce. Appl Environ Microbiol 68, 5217–5222.

    Article  PubMed  CAS  Google Scholar 

  • Saitou N and Nei M 1987 A neighbour-joining method: a new method for reconstructing phylogenetics trees. Mol Biol Evol 44, 406–425.

    Google Scholar 

  • Sprinzl M, Moll J, Meissner F and Hatmann T 1985 Compilation of tRNA sequences. Nucleic Acid Res 13, 1–49.

    Article  Google Scholar 

  • Sy A, Giraud E, Jourand P, García N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C and Dreyfus B 2001 Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183, 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG 1997 The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24, 4876–4882.

    Article  Google Scholar 

  • Velázquez E, Cervantes E, Igual JM, Peix A, Mateos PF, Benamar S, Moiroud A, Wheeler CT, Dawson J, Labeda D, Rodríguez-Barrueco C and Martínez-Molina E 1998a Analysis of LMW RNA profiles of Frankia strains by staircase electrophoresis. Syst Appl Microbiol 21, 539–545.

    PubMed  Google Scholar 

  • Velázquez E, Cruz-Sánchez JM, Mateos PF and Martínez-Molina E 1998b Analysis of stable low molecular weight RNA profiles of members of the family Rhizobiaceae. Appl Environ Microbiol 64, 1555–1559.

    PubMed  Google Scholar 

  • Velázquez E, Calvo O, Cervantes E, Mateos PF, Tamame M and Martínez-Molina E 2000 Staircase electrophoresis profiles of stable low molecular weight RNA as yeast fingerprinting. Int J Syst Evol Microbiol 50, 917–923.

    PubMed  Google Scholar 

  • Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M and Martínez-Molina E 2001a Description of Mesorhizobium chacoense sp. nov. that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51, 1011–1021.

    PubMed  Google Scholar 

  • Velázquez E, Martínez-Romero E, Rodríguez-Navarro DN, Trujillo ME, Daza A, Mateos PF, Martinez-Molina E and Van Berkum P 2001b Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low molecular weight RNA. Appl Environ Microbiol 67, 1008–1010.

    Article  PubMed  Google Scholar 

  • Velázquez E, Trujillo ME, Peix A, Palomo JL, García-Benavides P, Mateos P, Ventosa A and Martínez-Molina E 2001c Stable low molecular weight RNA analyzed by staircase electrophoresis, a molecular signature for both prokaryotic and eukaryotic microorganisms. Syst Appl Microbiol 24, 490–499.

    Article  PubMed  Google Scholar 

  • Vincent JM 1970 The cultivation, isolation and maintenance of rhizobia. In A manual for the practical study of root-nodule. Ed. JM Vincent. pp. 1–13. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX and Martínez-Romero E 1999 Diversity of rhizobia associated with Amorpha fruticosa isolated from chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49, 51–65.

    PubMed  Google Scholar 

  • Wieser M and Busse HJ 2000 Rapid identification of Staphylococcus epidermidis. Int J Syst Evol Microbiol 50, 1087–1093.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Velázquez C. Rodríguez-Barrueco

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Rivas, R., Peix, A., Mateos, P.F., Trujillo, M.E., Martínez-Molina, E., Velázquez, E. (2007). Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. In: Velázquez, E., Rodríguez-Barrueco, C. (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5765-6_3

Download citation

Publish with us

Policies and ethics