Skip to main content

Fertilizer potential of phosphorus recovered from wastewater treatments

  • Conference paper
First International Meeting on Microbial Phosphate Solubilization

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 102))

Abstract

Large quantities of phosphate present in wastewater is one of the main causes of eutrophication that negatively affect natural water bodies, both fresh water and marine. It is desirable that water treatment facilities remove phosphorus from the wastewater before it is returned to the environment. In most countries, total removal or at least a significant reduction of phosphorus is obligatory, if not always fulfilled. This mini-review summarizes the options of recovering phosphorus from wastewater as struvite (ammonium-magnesium-phosphate) and hydroxyapatite formation and other feasible options, using the now largely regarded contaminant, phosphorus in wastewater, as a raw material for the fertilizer industry. The future use of phosphate solubilizing microorganisms, applied together with the recovered phosphorus, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bashan Y, Moreno M and Troyo E 2000 Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils 32, 265–272.

    Article  CAS  Google Scholar 

  • Battistoni P, Fava G, Pavan P, Musacco A and Cecchi F 1997 Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Water Res. 31, 2925–2929.

    Article  CAS  Google Scholar 

  • Battistoni P, Pavan P, Prisciandaro M and Cecchi F 2000 Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Res. 34, 3033–3041.

    Article  CAS  Google Scholar 

  • Booker N A, Priestley A J and Fraser I H 1999 Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery. Environ. Technol. 20, 777–782.

    CAS  Google Scholar 

  • Donnert D and Salecker M 1999a Elimination of phosphorus from municipal and industrial waste water. Water Sci. Technol. 40, 195–202.

    Article  CAS  Google Scholar 

  • Donnert D and Salecker M 1999b Elimination of phosphorus from waste water by crystallization. Environ. Technol. 20, 735–742.

    CAS  Google Scholar 

  • Driver J, Lijmbach D and Steen I 1999 Why recover phosphorus for recycling and how?. Environ Technol. 20, 651–662.

    CAS  Google Scholar 

  • Durrant A E, Scrimshaw M D, Stratful I and Lester J N 1999 Review of the feasibility of recovering phosphate from wastewater for use as a raw material by the phosphate industry. Environ. Technol. 20, 749–758.

    Google Scholar 

  • Gaterell M R, Gay R, Wilson R, Gochin R J and Lester J N 2000 An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markets. Environ. Technol. 21, 1067–1084.

    CAS  Google Scholar 

  • Giesen A 1999 Crystallisation process enables environmental friendly phosphate removal at low costs. Environ. Technol. 20, 769–775.

    CAS  Google Scholar 

  • Isherwood K F 2000 Mineral fertilizer use and the environment. International Fertilizer Industry Association / United Nations Environment Programme, Paris. pp. 106.

    Google Scholar 

  • Jeanmaire N and Evans T 2001 Technico-economic feasibility of P-recovery from municipal wastewaters. Environ. Technol. 22, 1355–1361.

    PubMed  CAS  Google Scholar 

  • Johansson L and Gustafsson J P 2000 Phosphate removal using blast furnace slags and opoka-mechanisms. Water Res. 34, 259–265.

    Article  CAS  Google Scholar 

  • Jones D L 1998 Organic acids in the rhizosphere — a critical review. Plant Soil 205, 25–44.

    Article  CAS  Google Scholar 

  • Kuroda A, Takiguchi N, Gotanda T, Nomura K, Kato J, Ikeda T and Ohtake H 2002 A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling. Biotechnol. Bioeng. 78, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Lau P S, Tam N F Y and Wong Y S 1997 Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ. Technol. 18, 945–951.

    CAS  Google Scholar 

  • Leggett M, Gleddie S and Holloway G 2001 Phosphate-solubilising microorganisms and their use. In Plant Nutrient Acquisition: New Perspectives. Eds. N Ae, J Arihara, K Okada and A Srinivasan. pp. 299–318. Springer-Verlag, Tokyo.

    Google Scholar 

  • Liberti L, Petruzzelli D and De Florio L 2001 REM NUT ion exchange plus struvite precipitation process. Environ. Technol. 22, 1313–1324.

    Article  PubMed  CAS  Google Scholar 

  • Montaigne F and Essick P 2002 Water Pressure. National Geographic 202, 2–33.

    Google Scholar 

  • Moriyama K, Kojima T, Minawa Y, Matsumoto S and Nakamachi K 2001 Development of artificial seed crystal for crystallization of calcium phosphate. Environ. Technol. 22, 1245–1252.

    Article  PubMed  CAS  Google Scholar 

  • Munch E V and Barr K 2001 Controlled struvite crystallization for removing phosphorus from anaerobic digester side-streams. Water Res. 35, 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Richardson A E 2001 Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian J. Plant Physiol. 28, 897–906.

    Google Scholar 

  • Rodriguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  PubMed  CAS  Google Scholar 

  • Rojas A, Holguin G, Glick B R and Bashan Y 2001 Synergism between Phyllobacterium sp. (N2)fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol. Ecol. 35, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A K 1990 Phosphate cement-based fast setting binders. J. Am. Ceram. Soc. Bull. 69, 234–238.

    CAS  Google Scholar 

  • Schipper WJ, Klapwijk A, Potjer B, Rulkens WH, Temmink B G, Kiestra F D G and Lijmbach A C M 2001 Phosphate recycling in the phosphorus industry. Environ. Technol. 22, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Schuiling R D and Andrade A 1999 Recovery of struvite from calf manure. Environ. Technol. 20, 765–768.

    CAS  Google Scholar 

  • Stratful I, Brett S, Scrimshaw M B and Lester J N 1999 Biological phosphorus removal, its role in phosphorus recycling. Environ. Technol. 20, 681–695.

    CAS  Google Scholar 

  • Stratful I, Scrimshaw M D and Lester J N 2001 Conditions influencing the precipitation of magnesium ammonium phosphate. Water Res. 35, 4191–4199.

    Article  PubMed  CAS  Google Scholar 

  • Strickland J 1999 Perspectives for phosphorus recovery offered by enhanced biological P removal. Environ. Technol. 20, 721–725.

    CAS  Google Scholar 

  • Trépanier C, Parent S, Comeau Y and Bouvrette J 2002 Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Res. 36, 1007–1017.

    Article  PubMed  Google Scholar 

  • Ueno Y and Fujii M 2001 Three years experience of operating and selling recovered struvite from full-scale plant. Environ. Technol. 22, 1373–1381.

    PubMed  CAS  Google Scholar 

  • Van Loosdrecht M C M, Hooijmans C M, Brdjanovic D and Heijnen J J 1997 Biological phosphate removal processes. Appl. Microbiol. Biot. 48, 289–296.

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A and Bashan Y 2000 Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol. Fertil. Soils 30, 460–468.

    Article  CAS  Google Scholar 

  • Whitelaw M 2000 Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 69, 99–151.

    CAS  Google Scholar 

  • Williams S 1999 Struvite precipitation in the sludge stream at slough wastewater treatment plant and opportunities for phosphorus recovery. Environ. Technol. 20, 743–747.

    Article  CAS  Google Scholar 

  • Woods N C, Sock S M and Daigger G T 1999 Phosphorus recovery technology modeling and feasibility evaluation for municipal wastewater treatment plants. Environ. Technol. 20, 663–679.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Velázquez C. Rodríguez-Barrueco

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

de-Bashan, L.E., Bashan, Y. (2007). Fertilizer potential of phosphorus recovered from wastewater treatments. In: Velázquez, E., Rodríguez-Barrueco, C. (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5765-6_27

Download citation

Publish with us

Policies and ethics