Σ* Fine Structure

Chapter

Abstract

Fine Structure is the name given to an analysis developed by Ronald Jensen in the late 60’s and early 70’s of Gödel’s universe L of constructible sets with which Gödel showed the consistency of the Axiom of Choice and Continuum Hypothesis with the usual axioms of set theory. As the name implies, the ramified nature of L that Gödel used, is given a microscopic treatment of how sets are constructed. Jensen sought to replace the Gödel levels L α with levels J α which are closed under certain rudimentary set functions and so are more useful for this purpose. This analysis turned out to be extremely fruitful and resulted in a wealth of information about the ordinal combinatorial structure of L, but moreover gave insight into a wealth of absolute facts about V the universe of all sets of mathematical discourse.

Gödel’s L has subsequently been much generalised in order to gain an understanding of V, and a whole spectrum of inner models are now used. Such inner models also require fine structure for their analysis (indeed even for their definition) and the Σ*-fine structure that Jensen developed is a very flexible tool covering a whole range of such inner models.

The chapter gives an account of this method, together with some history, as well as some applications to combinatorial principles such as Global-.

Keywords

Coherence Hull Posit Arena Boris 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Aaron Beller and Ami Litman. A strengthening of Jensen’s principles. The Journal of Symbolic Logic, 45(2):251–264, 1980. MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Aaron Beller, Ronald B. Jensen, and Philip D. Welch. Coding the Universe, volume 47 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982. MATHGoogle Scholar
  3. [3]
    Shai Ben-David and Menachem Magidor. The weak * is really weaker than the full . The Journal of Symbolic Logic, 51(4):1029–1033, 1986. MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Douglas Burke. Generic embeddings and the failure of box. Proceedings of the American Mathematical Society, 123(9):2867–2871, 1995. MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    James Cummings and Ernest Schimmerling. Indexed squares. Israel Journal of Mathematics, 131:61–99, 2002. MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    James Cummings, Matthew Foreman, and Menachem Magidor. Squares, scales, and stationary reflection. Journal of Mathematical Logic, 1(1):35–98, 2001. MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    James Cummings, Matthew Foreman, and Menachem Magidor. Canonical structure for the universe of set theory. II. Annals of Pure and Applied Logic, 142:55–75, 2006. MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Keith J. Devlin. Constructibility. Perspectives in Mathematical Logic. Springer, Berlin, 1984. MATHGoogle Scholar
  9. [9]
    Anthony J. Dodd. The Core Model, volume 61 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982. MATHGoogle Scholar
  10. [10]
    Anthony J. Dodd and Ronald B. Jensen. The core model. Annals of Mathematical Logic, 20(1):43–75, 1981. MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Hans-Dieter Donder. Coarse morasses in L. In Ronald B. Jensen and Alexander Prestel, editors, Set Theory and Model Theory, volume 872 of Lecture Notes in Mathematics, pages 37–54. Springer, Berlin, 1981. CrossRefGoogle Scholar
  12. [12]
    Hans-Dieter Donder. Another look at gap-1 morasses. In Anil Nerode and Richard Shore, editors, Recursion Theory, volume 42 of Proceedings of Symposia in Pure Mathematics, pages 223–236. American Mathematical Society, Providence, 1985. Google Scholar
  13. [13]
    Hans-Dieter Donder, Ronald B. Jensen, and Lee J. Stanley. Condensation coherent global square systems. In Anil Nerode and Richard Shore, editors, Recursion Theory, volume 42 of Proceedings of Symposia in Pure Mathematics, pages 237–258. American Mathematical Society, Providence, 1985. Google Scholar
  14. [14]
    Qi Feng and Ronald B. Jensen. Supercomplete extenders and type-1 mice. Annals of Pure and Applied Logic, 126(1–3):1–73, 2004. CrossRefMathSciNetGoogle Scholar
  15. [15]
    Matthew Foreman and Menachem Magidor. A very weak square principle. The Journal of Symbolic Logic, 62(1):175–196, 1988. CrossRefMathSciNetGoogle Scholar
  16. [16]
    Sy D. Friedman. Strong coding. Annals of Pure and Applied Logic, 35:1–98, 1987. CrossRefMathSciNetGoogle Scholar
  17. [17]
    Sy D. Friedman. The Σ* approach to the fine structure of L. Fundamenta Mathematicae, 3(4):453–468, 1997. MATHGoogle Scholar
  18. [18]
    Sy D. Friedman. Fine Structure and Class Forcing, volume 3 of Series in Logic and Its Applications. de Gruyter, Berlin, 2000. MATHGoogle Scholar
  19. [19]
    Sy D. Friedman and Peter G. Koepke. An elementary approach to the fine structure of L. The Bulletin of Symbolic Logic, 3(4):453–468, 1997. MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Sy D. Friedman and B. Piwinger. Hyperfine structure theory and gap 2 morasses. To appear. Google Scholar
  21. [21]
    Sy D. Friedman, Peter G. Koepke, and Boris Piwinger. Hyperfine structure theory and gap 1 morasses. The Journal of Symbolic Logic, 71:480–490, 2006. MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    John Gregory. Higher Souslin trees and the GCH. The Journal of Symbolic Logic, 41(3):663–771, 1976. MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Tetsuya Ishiu. Club guessing sequences and filters. The Journal of Symbolic Logic, 70(4):1037–1071, 2005. MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Ronald B. Jensen. The fine structure of the constructible hierarchy. Annals of Mathematical Logic, 4:229–308, 1972. MATHCrossRefGoogle Scholar
  25. [25]
    Ronald B. Jensen. A new fine structure for higher core models. Circulated manuscript, Berlin, 1997. Google Scholar
  26. [26]
    Ronald B. Jensen. Higher gap morasses. Circulated manuscript, Bonn, 1972–1973. Google Scholar
  27. [27]
    Ronald B. Jensen. Nonoverlapping extenders. Circulated manuscript, Oxford. Google Scholar
  28. [28]
    Ronald B. Jensen. The core model for measures of order zero. Circulated manuscript, Oxford, 1989. Google Scholar
  29. [29]
    Ronald B. Jensen. Some remarks on below \(0^{\P}\) . Circulated manuscript, Oxford, 1994. Google Scholar
  30. [30]
    Ronald B. Jensen and Martin Zeman. Smooth categories and global . Annals of Pure and Applied Logic, 102:101–138, 2000. MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Akihiro Kanamori. Morasses in combinatorial set theory. In Adrian R. D. Mathias, editor, Surveys in Set Theory, volume 87 of London Mathematical Society Lecture Notes Series, pages 167–196. Cambridge University Press, Cambridge, 1983. Google Scholar
  32. [32]
    Peter G. Koepke. Fine Structure for Inner Model Theory. Habilitationsschrift, Freiburg im Breisgau, 1989. Google Scholar
  33. [33]
    Peter G. Koepke and Philip D. Welch. On the strength of mutual stationarity. In Joan Bagaria and Stevo Todorcevic, editors, Set Theory, Trends in Mathematics, pages 309–320. Birkhäuser, Basel, 2006. CrossRefGoogle Scholar
  34. [34]
    Menachem Magidor. Representing simple sets as countable unions of sets in the core model. Transactions of the American Mathematical Society, 317(1):91–106, 1990. MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    William J. Mitchell. The core model for sequences of measures. I. Mathematical Proceedings of the Cambridge Philosophical Society, 95(2):229–260, 1984. MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    William J. Mitchell and John R. Steel. Fine Structure for Iteration Trees, volume 3 of Lecture Notes in Logic. Springer, Berlin, 1991. Google Scholar
  37. [37]
    William J. Mitchell, Ernest Schimmerling, and John R. Steel. The covering lemma up to a Woodin cardinal. Annals of Pure and Applied Logic, 84(2):219–255, 1997. MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    Charles J.G. Morgan. Higher gap morasses Ia: Gap-two morasses and condensation. The Journal of Symbolic Logic, 63:753–787, 1998. MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    Joseph R. Rebholz. Consequences of morass and diamond. Annals of Mathematical Logic, 7:361–385, 1974. CrossRefMathSciNetGoogle Scholar
  40. [40]
    Thomas L. Richardson. A Silver machine approach to the constructible universe. PhD thesis, University of California, Berkeley, 1979. Google Scholar
  41. [41]
    Ernest Schimmerling. A core model toolbox and guide. Chapter 20 in this Handbook. doi: 10.1007/978-1-4020-5764-9_21.
  42. [42]
    Ernest Schimmerling. Combinatorial principles in the core model for one Woodin cardinal. Annals of Pure and Applied Logic, 74(2):153–201, 1995. MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    Ernest Schimmerling and John R. Steel. The maximality of the core model. Transactions of the American Mathematical Society, 351:3119–3141, 1999. MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Ernest Schimmerling and Martin Zeman. Square in core models. The Bulletin of Symbolic Logic, 7(3):305–314, 2001. MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    Ernest Schimmerling and Martin Zeman. Characterization of κ in core models. Journal of Mathematical Logic, 4:1–72, 2004. MATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    Ralf Schindler and Martin Zeman. Fine structure. Chapter 9 in this Handbook. doi: 10.1007/978-1-4020-5764-9_10.
  47. [47]
    Robert M. Solovay. Strongly compact cardinals and the GCH. In Leon Henkin et al., editors, Tarski Symposium, volume 25 of Proceedings of Symposia in Pure Mathematics, pages 365–372. American Mathematical Society, Providence, 1974. Google Scholar
  48. [48]
    Robert M. Solovay, William N. Reinhardt, and Akihiro Kanamori. Strong axioms of infinity and elementary embeddings. Annals of Mathematical Logic, 13(1):73–116, 1978. MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    Lee J. Stanley. “L-like” models of set theory: forcing, combinatorial principles, and morasses. Doctoral dissertation, University of California, Berkeley, 319 pages, 1977. Google Scholar
  50. [50]
    John R. Steel. An outline of inner model theory. Chapter 19 in this Handbook. doi: 10.1007/978-1-4020-5764-9_20.
  51. [51]
    John R. Steel. PFA implies ADL(R). The Journal of Symbolic Logic, 70(4):1255–1296, 2005. MATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    Stevo Todorčević. A note on the proper forcing axiom. In James E. Baumgartner, Donald A. Martin, and Saharon Shelah, editors, Axiomatic Set Theory, volume 31 of Contemporary Mathematics, pages 209–218. American Mathematical Society, Providence, 1983. Google Scholar
  53. [53]
    Daniel J. Velleman. Simplified morasses. The Journal of Symbolic Logic, 49(1):257–271, 1984. MATHCrossRefMathSciNetGoogle Scholar
  54. [54]
    Daniel J. Velleman. Simplified gap-2 morasses. Annals of Pure and Applied Logic, 34(2):171–208, 1987. MATHCrossRefMathSciNetGoogle Scholar
  55. [55]
    John Vickers and Philip D. Welch. On successors of Jónsson cardinals. Archive for Mathematical Logic, 39(6):465–473, 2000. MATHCrossRefMathSciNetGoogle Scholar
  56. [56]
    John Vickers and Philip D. Welch. On elementary embeddings of a sub-model into the universe. Archive for Mathematical Logic, 66(3):1090–1116, 2001. MATHMathSciNetGoogle Scholar
  57. [57]
    Philip D. Welch. Combinatorial principles in the core model. D.Phil. thesis. Oxford University, 1979. Google Scholar
  58. [58]
    Philip. D. Welch. Determinacy in the difference hierarchy of co-analytic sets. Annals of Pure and Applied Logic, 80:69–108, 1996. MATHCrossRefMathSciNetGoogle Scholar
  59. [59]
    Philip D. Welch. Some remarks on the maximality of inner models. In Pavel Pudlak and Sam Buss, editors, Proceeding of the European Meeting in Symbolic Logic, Praha, volume 13 of Lecture Notes in Logic, pages 516–540. Kluwer Academic, Norwell, 1999. Google Scholar
  60. [60]
    Dorshka Wylie. Condensation and square in a higher core model. Doctoral dissertation, Massachusetts Institute of Technology, 1990. Google Scholar
  61. [61]
    Martin Zeman. The core models for non-overlapping extenders and its applications. Doctoral dissertation, Humboldt University, Berlin, 1998. Google Scholar
  62. [62]
    Martin Zeman. Inner Models and Large Cardinals, volume 5 of Series in Logic and Its Applications. de Gruyter, Berlin, 2002. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BristolBristolUnited Kingdom

Personalised recommendations