Mineral fertilizers, organic amendments and crop rotation managements for soil fertility maintenance in the Guinean zone of Burkina Faso (West Africa)

  • B.V. Bado
  • A. Bationo
  • F. Lompo
  • M.P. Cescas
  • M.P Sedogo


The effects of cowpea (Vigna unguiculata) and groundnut (Arachis hypogea) on succeeding sorghum yields, soil mineral nitrogen and N recoveries were studied during three years (2000 to 2002) in a weakly acid Ultisol of the agronomic research station of Farakô-Ba located in the Guinean zone of Burkina Faso. A field agronomic experiment with a factorial 3×4 design of three crop rotations (cowpea-sorghum, groundnut-sorghum and sorghum-sorghum) as first factor and four fertilizer treatments (PK fertilizer, NPK, NPK+ Manure and control) as second factor in a split plot arrangement with four replications.

Highest yields were obtained when sorghum was rotated with legumes while lowest yields were obtained in mono cropping of sorghum. Compared to mono cropping, sorghum could produced 2.9 and 3.1 times more grain yields when it was rotated with groundnut or cowpea respectively. A better use of fertilizer N was observed in legume-sorghum rotations. In continuous sorghum, fertilizer N use efficiency (NUE) was 20%. But in Cowpea-Sorghum and Groundnut-Sorghum rotations, NUEs were 28 and 37% respectively. Legume-sorghum rotations increased sol mineral nitrogen. The soils of legume-sorghum rotations provided more nitrogen to succeeding sorghum compared to mono cropping of sorghum and the highest total N uptake by sorghum was observed in legume-sorghum rotations


Cowpea crop rotation groundnut fertilizer legume nitrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bado B.V., Sedogo M.P., Cescas M.P., Lompo F. and Bationo A. 1997. Effet à long terme des fumures sur le sol et les rendements du maddotis au Burkina Faso. Cahiers Agricultures 6 (6): 571–575.Google Scholar
  2. Bagayoko M., Buerkert A., Lung G., Bationo A. and Römheld V. 2000. Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant and Soil 218: 103–116.CrossRefGoogle Scholar
  3. Bationo A. and Mokwunye A.U. 1991a. Role of manure and crop residues in alleviating soil fertility constraints of crop production with special reference to the Sahelian and Sudanean zones of West Africa. Fertilizer Research 29: 117–125.CrossRefGoogle Scholar
  4. Bationo, A. and Mokwunye A.U. 1991b. Alleviating soil fertility constraints to increased crop production in West Africa: The experience of the Sahel. In: Mokwunye A. (Ed) Alleviating soil fertility constraints to increased crop production in West Africa. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 195–215.Google Scholar
  5. Bationo A. and Ntare B.R. 2000. Rotation and nitrogen fertilizer effects on pearl millet, cowpea and groundnut yield and soil chemical properties in a sandy soil in the semi-arid tropics, West Africa. Journal of Agricultural Sciences 134: 277–284.CrossRefGoogle Scholar
  6. Berger M., Belem P.C., Dakouo D. and Hien V. 1987. Le maintien de la fertilité des sols dans l’Ouest du Burkina Faso et la nécessité de l’association agriculture-élévage. Cot. et Fib. Trop.; vol.XLII, Fasc 3, pp 10.Google Scholar
  7. Chalk P.M. 1998. Dynamics of biologically fixed N in legume-cereal rotations: a review. Aust. J. Res. 49: 303–316.CrossRefGoogle Scholar
  8. Fixen P.E and Grove J.H. 1990. Testing soil for phosphorus. In: Westerman R.L. (Ed) Soil Testing and Plant Analysis. Soil Science Society of America, Madison, WI, pp. 141–180.Google Scholar
  9. Giller K.E., Mcdonagh J.F., Toomsan B., Limpinuntana V., Cook H.F. and Lee H.C. 1995. Legumes in the cropping systems of North-East Thailand. University of London, UK. Third International Conference on Sustainable Agriculture, Wye College Press, Ashford.Google Scholar
  10. Keeney D.R. 1982. Nitrogen availability indices. In: Page A.L., Millet R.H. & Keeney D.R. (Eds). Methods of Soil Analysis. Part II. (2^nd Edn) Agronomy Monograph No 9, pp 711–730. Madison, WI: American Society of Agronomy.Google Scholar
  11. Kouyaté Z., Franzluebbers-Kathrin; Juo-Anthony S.R. and Hossner-Lloyd R. 2000. Tillage, crop residue, legume rotation and green manure effects on sorghum and millet yields in the semiarid tropics of Mali. Plant-and-Soil 225 (1–2): 141–151.CrossRefGoogle Scholar
  12. Kurtz L.T., Boon L.V., Peck T.R. and Hoeft R.G. 1984. Crop rotation for efficient nitrogen production. In: Hauck D. (Ed) Nitrogen in crop production, Madison, WI, pp. 295–305.Google Scholar
  13. Mclean, E. O. 1982. Soil pH and lime requirement. In: Page, A.L., Millet R.H. and Keeney D.R. (eds) Methods of Soil Analysis (2nd edn). Agronomy Monograph No 9, American Society of Agronomy, Madison, WI, pp 199–223.Google Scholar
  14. Menzel R.G. and Smith S.J. 1984. Soil fertility and plant nutrition. In. L’Annunziata M.F. and Legg J.O. (ed) Isotopes and radiation in agricultural sciences Vol 1:1–34. Soil-Plant-Water Relations. Academic Press, London.Google Scholar
  15. Nagarajah S.A., Posner M. and Quirk J.P. 1970. Competitive adsorption of phosphate with polygalacturonate and others organic anions on kaolinite and oxide surfaces. Nature 228: 83 –84.PubMedCrossRefGoogle Scholar
  16. Peoples M.B and Crasswell E.T. 1992. Biological nitrogen fixation: Investment, Expectation and actual contribution to agriculture. Plant and Soil 141: 13–39.CrossRefGoogle Scholar
  17. Peoples M.P., Herridge D.F. and Ladha J.K. 1995. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production? Plant and Soil 174: 3–28.CrossRefGoogle Scholar
  18. Pichot J., Sedogo M.P. and Poulain J.F. 1981. Évolution de la fertilité d’un sol ferrugineux tropical sous l’influence des fumures minérales et organiques. Agronomie Tropicale Ndeg 36:122–133.Google Scholar
  19. Pieri C. 1989. Fertilité des terres de savane. Bilan de 30 années de recherche et de développement agricoles au sud du Sahara. Paris, Agridoc-International, 444 p.Google Scholar
  20. Shumba E.M. 1990. Response of maize in rotation with cowpea to NPK fertilizer in a low rainfall area. The Zimbabwe-Journal-of-Agricultural-Research 28 (1): 39–45.Google Scholar
  21. Subbarao G.V., Ae N. and Otani T. 1997. Genotypic variation in iron and aluminium-phosphate solubilizing activity of pigeon pea root exudates under P deficient conditions. Soil Science and Plant Nutrition, 43(2) : 295–305.Google Scholar
  22. Varvel G.E. and Peterson T.A. 1990. Nitrogen fertilizer recovery by corn in monoculture and rotation systems. Agron. J. 82: 935–938.CrossRefGoogle Scholar
  23. Walkley A. and Black J.A. 1934. An examination of the Detjareff method for determining soil organic matter and a proposed modification of the chromatic acid titration method. Soil Science 37: 29–38.CrossRefGoogle Scholar
  24. Wani S.P., Rupela O.P. and Lee K.K. 1995. Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant and Soil 174: 29–49.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • B.V. Bado
    • 1
  • A. Bationo
    • 2
  • F. Lompo
    • 3
  • M.P. Cescas
    • 4
  • M.P Sedogo
    • 3
  1. 1.INERA, Centre Régional de Recherche Agronomique de Farakˆo-BaBobo-DioulassoBurkina Faso
  2. 2.The Tropical Soil Biology and Fertility Institute of CIATNairobiKenya
  3. 3.INERA, CREAF de KamboinseBURKINA FASO
  4. 4.Département des Sols et Génie Agroalimentaire (FSSA)2219 Comtois Université Laval Ste Foy Québec (QC)Canada

Personalised recommendations