Advertisement

A Geochemical and Petrological View of Mantle Plume

  • Tetsu Kogiso

Keywords

Partial Melting Mantle Plume Crustal Material Lower Mantle Mantle Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, Y., Y. Tatsumi, and H. Yamada (1999) Element transport by dehydration of subducted sediments: Implication for arc and ocean island magmatism. The Island Arc, 8, 38–46.CrossRefGoogle Scholar
  2. Allègre, C., and D.L. Turcotte (1986) Implications of a two-component marble-cake mantle. Nature, 323, 123–127.CrossRefGoogle Scholar
  3. Bonatti, E. (1990) Not so hot ‘hot spots’ in the oceanic mantle. Science, 250, 107–111.CrossRefGoogle Scholar
  4. Brandon, A.D., M.D. Norman, R.J. Walker, and J.W. Morgan (1999) 186Os-187Os systematics of Hawaiian picrites. Earth Planet. Sci. Lett., 174, 25–42.CrossRefGoogle Scholar
  5. Brenan, J.M., H.F. Shaw, F.J. Ryerson, and D.L. Phinney (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta, 59, 3331–3350.CrossRefGoogle Scholar
  6. Chase, C.G. (1981) Oceanic island Pb: Two-stage histories and mantle evolution. Earth Planet. Sci. Lett., 52, 227–284.CrossRefGoogle Scholar
  7. Chauvel, C., A.W. Hofmann, and P. Vidal (1992) HIMU-EM: The French Polynesian connection. Earth Planet. Sci. Lett., 110, 99–119.CrossRefGoogle Scholar
  8. Christensen, U.R., and D.A. Yuen (1985) Layered convection induced by phase transitions. J. Geophys. Res., 90, 10291–10300.CrossRefGoogle Scholar
  9. Cordery, M.J., G.F. Davies, and I.H. Campbell (1997) Genesis of flood basalts from eclogite-bearing mantle plumes. J. Geophys. Res., 102, 20179–20197.CrossRefGoogle Scholar
  10. Daines, M.J., and D.L. Kohlstedt (1993) A laboratory study of melt migration. Philos. Trans. R. Soc. Lond. A, 342, 43–52.CrossRefGoogle Scholar
  11. DePaolo, D.J., and G.J. Wasserburg (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett., 3, 743–746.Google Scholar
  12. Dixon, J.E., and D.A. Clague (2001) Volatiles in basaltic glasses from Loihi seamount, Hawaii: Evidence for a relatively dry plume component. J. Petrol., 42, 627–654.CrossRefGoogle Scholar
  13. Dixon, J.E., L. Leist, C. Langmuir, and J.G. Schilling (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature, 420, 385–389.CrossRefGoogle Scholar
  14. Elliott, T., A. Zindler, and B. Bourdon (1999) Exploring the Kappa conundrum: The role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett., 169, 129–145.CrossRefGoogle Scholar
  15. Farley, K.A., J.H. Natland, and H. Craig (1992) Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett., 111, 183–199.CrossRefGoogle Scholar
  16. Farnetani, C.G., and M.A. Richards (1994) Numerical investigations of the mantle plume initiation model for flood basalt events. J. Geophys. Res., 99, 13813–13833.CrossRefGoogle Scholar
  17. Farnetani, C.G., M.A. Richards, and M.S. Ghiorso (1996) Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth Planet. Sci. Lett., 143, 81–94.CrossRefGoogle Scholar
  18. Gaetani, G.A., and T.L. Grove (1998) The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol., 131, 323–346.CrossRefGoogle Scholar
  19. Gast, P.W., G.R. Tilton, and C. Hedge (1964) Isotopic composition of lead and strontium from Ascension and Gough Islands. Science, 145, 1181–1185.CrossRefGoogle Scholar
  20. Green, D.H., T.J. Falloon, S.M. Eggins, and G.M. Yaxley (2001) Primary magmas and mantle temperatures. Eur. J. Mineral., 13, 437–451.CrossRefGoogle Scholar
  21. Hanan, B.B., and D.W. Graham (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science, 272, 991–995.CrossRefGoogle Scholar
  22. Hart, S.R., and H. Staudigel (1989) Isotopic characterization and identification of recycled components. In Hart, S.R., and L. Gülen (eds.) Crust/Mantle Recycling at Convergence Zones, Kluwer, Reidel, pp. 15–28.Google Scholar
  23. Hart, S.R., E.H. Hauri, L.A. Oschmann, and J.A. Whitehead (1992) Mantle plumes and entrainment: Isotope evidence. Science, 256, 517–520.CrossRefGoogle Scholar
  24. Hauri, E.H. (1996) Major-element variability in the Hawaiian mantle plume. Nature, 382, 415–419.CrossRefGoogle Scholar
  25. Hirose, K., and I. Kushiro (1993) Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett., 114, 477–489.CrossRefGoogle Scholar
  26. Hirose, K., and T. Kawamoto (1995) Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett., 133, 463–473.CrossRefGoogle Scholar
  27. Hirschmann, M.M., and E.M. Stolper (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib. Mineral. Petrol., 124, 185–208.CrossRefGoogle Scholar
  28. Hirschmann, M.M., T. Kogiso, M.B. Baker, and E.M. Stolper (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology, 31, 481–484.CrossRefGoogle Scholar
  29. Hofmann, A.W. (1997) Mantle geochemistry: The message from oceanic volcanism. Nature, 385, 219–229.CrossRefGoogle Scholar
  30. Hofmann, A.W., and W.M. White (1982) Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett., 57, 421–436.CrossRefGoogle Scholar
  31. Irifune, T., and T.A. Ringwood (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett., 117, 101–110.CrossRefGoogle Scholar
  32. Ita, J., and L. Stixrude (1992) Petrology, elasticity, and composition of the mantle transition zone. J. Geophys. Res., 97(5), 6849–6866.Google Scholar
  33. Ito, G., and J.J. Mahoney (2005a) Flow and melting of a heterogeneous mantle: 1. Method and importance to the geochemistry of ocean island and mid-ocean ridge basalts. Earth Planet. Sci. Lett., 230, 29–46.CrossRefGoogle Scholar
  34. Ito, G., and J.J. Mahoney (2005b) Flow and melting of a heterogeneous mantle: 2. implications for a chemically nonlayered mantle. Earth Planet. Sci. Lett., 230, 47–63.CrossRefGoogle Scholar
  35. Johnson, M.C., and T. Plank (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosyst., 13, 1999GC000014.Google Scholar
  36. Jung, H., and S. Karato (2001) Water-induced fabric transitions in olivine. Science, 293, 1460–1463.CrossRefGoogle Scholar
  37. Kaneshima, S., and G. Helffrich (1999) Dipping low-velocity layer in the mid-lower mantle: Evidence for geochemical heterogeneity. Science, 283, 1888–1891.CrossRefGoogle Scholar
  38. Kelemen, P.B. (1990) Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol., 31, 51–98.Google Scholar
  39. Kelemen, P.B., G. Hirth, N. Shimizu, M. Spiegelman, and H.J.B. Dick (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos. Trans. R. Soc. Lond. A, 355, 283–318.CrossRefGoogle Scholar
  40. Kellogg, J.B., S.B. Jacobsen, and R.J. O’Connell (2002) Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Lett., 204, 183–202.CrossRefGoogle Scholar
  41. Kogiso, T., Y. Tatsumi, and S. Nakano (1997a) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet. Sci. Lett., 148, 193–205.CrossRefGoogle Scholar
  42. Kogiso, T., Y. Tatsumi, G. Shimoda, and H.G. Barsczus (1997b) High μ (HIMU) ocean island basalts in southern Polynesia: New evidence for whole-mantle scale recycling of subducted oceanic crust. J. Geophys. Res., 102, 8085–8103.CrossRefGoogle Scholar
  43. Kogiso, T., K. Hirose, and E. Takahashi (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: Application to the genesis of ocean island basalts. Earth Planet. Sci. Lett., 162, 45–61.CrossRefGoogle Scholar
  44. Kogiso, T., M.M. Hirschmann, and D.J. Frost (2003) High pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett., 216, 603–617.CrossRefGoogle Scholar
  45. Kogiso, T., M.M. Hirschmann, and P.W. Reiners (2004a) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta, 68, 345–360.CrossRefGoogle Scholar
  46. Kogiso, T., M.M. Hirschmann, and M. Pertermann (2004b) High pressure partial melting of mafic lithologies in the mantle. J. Petrol., 45, 2407–2422.CrossRefGoogle Scholar
  47. Korenaga, J. (2005) Why did not the Ontong Java Plateau form subaerially? Earth Planet. Sci. Lett., 234, 385–399.CrossRefGoogle Scholar
  48. Lundstrom, C.C. (2000) Rapid diffusive infiltration of sodium into partially molten peridotite. Nature, 403, 527–530.CrossRefGoogle Scholar
  49. Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.Google Scholar
  50. McKenzie, D., and M.J. Bickle (1988) The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29, 625–679.Google Scholar
  51. McKenzie, D., and R.K. O’Nions (1983) Mantle reservoirs and ocean island basalts. Nature, 301, 229–231.CrossRefGoogle Scholar
  52. McKenzie, D., and R.K. O’Nions (1991) Partial melt distributions from inversion of rare earth element concentrations. J. Petrol., 32, 1021–1091.Google Scholar
  53. Médard, E., M.W. Schmidt, P. Schiano, and L. Ottolini (2006) Melting of amphibolite-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. J. Petrol., 47, 481–504.CrossRefGoogle Scholar
  54. Melson, W.G., T. O’Hearn, and P. Kimberly (1999) Volcanic glasses from sea-floor spreading centers and other deep sea tectonic settings: Major and minor element compositions in the Smithsonian WWW Data Set (abstract). EOS, Trans. Am. Geophys. Un., 80(46), F1177.Google Scholar
  55. Morgan, Z., and Y. Liang (2003) An experimental and numerical study of the kinetics of harzburgite reactive dissolution with applications to dunite dike formation. Earth Planet. Sci. Lett., 214, 59–74.CrossRefGoogle Scholar
  56. Nichols, A.R.L., M.R. Carrol, and Á. Höskuldsson (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet. Sci. Lett., 202, 77–87.CrossRefGoogle Scholar
  57. Nishihara, Y., I. Aoki, E. Takahashi, K.N. Matsukage, and K. Funakoshi (2005) Thermal equation of state of majorite with MORB composition. Phys. Earth Planet. Inter., 148, 73–84.CrossRefGoogle Scholar
  58. Niu, Y., and M.J. O’Hara (2003) Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophys. Res., 108, doi:10.1029/2002JB002048.Google Scholar
  59. O’Hara, M.J. (1968) The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Science Rev., 4, 69–133.CrossRefGoogle Scholar
  60. Ono, S., Y. Ohishi, M. Issiki, and T. Watanuki (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, doi:10.1029/2004JB003196.Google Scholar
  61. Pertermann, M., and M.M. Hirschmann (2003a) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenites in basalt source regions from solidus location and melting rate. J. Geophys. Res., 108, doi:10.1029/2000JB000118.Google Scholar
  62. Pertermann, M., and M.M. Hirschmann (2003b) Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral-melt partitioning of major elements at 2–3 GPa. J. Petrol., 44, 2173–2201.CrossRefGoogle Scholar
  63. Pickering-Witter, J., and A.D. Johnston (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol., 140, 190–211.CrossRefGoogle Scholar
  64. Pilet, S., J. Hernandez, P. Sylvester, and M. Poujol (2005) The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet. Sci. Lett., 236, 148–166.CrossRefGoogle Scholar
  65. Riedel, M.R., and S. Karato (1997) Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth Planet. Sci. Lett., 148, 27–43.CrossRefGoogle Scholar
  66. Roy-Barman, M., and C.J. Allègre (1995) 187Os/186Os in oceanic island basalts: Tracing oceanic crust recycling in the mantle. Earth Planet. Sci. Lett., 129, 145–161.CrossRefGoogle Scholar
  67. Saal, A.E., S.R. Hart, N. Shimizu, E.H. Hauri, and G.D. Layne (1998) Pb isotopic variability in melt inclusions from oceanic island basalts. Polynesia. Science, 282(5393), 1481–1484.CrossRefGoogle Scholar
  68. Schiano, P., K.W. Burton, B. Dupre, J.L. Birck, G. Guille, and C.J. Allegre (2001) Correlated Os-Pb-Nd-Sr isotopes in the Austral-Cook chain basalts: The nature of mantle components in plume sources. Earth Planet. Sci. Lett., 186(3–4), 527–537.CrossRefGoogle Scholar
  69. Schilling, J.G., M.B. Bergeron, and R. Evans (1980) Halogens in the mantle beneath the North Atlantic. Philos. Trans. R. Soc. Lond. A, 297, 147–178.CrossRefGoogle Scholar
  70. Sengör, A.M.C. (1985) The story of Tethys: How many wives did Okeanos have? Episodes, 8, 3–12.Google Scholar
  71. Silver, P.G., R.W. Carlson, and P. Olson (1988) Deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection: Investigation of an enduring paradox. Ann. Rev. Earth Planet. Sci., 16, 477–541.CrossRefGoogle Scholar
  72. Sims, K.W.W., D.J. DePaolo, M.T. Murrell, W.S. Baldridge, S. Goldstein, D. Clague, and M. Jull (1999) Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U-230Th-226Ra and 235U-231Ra disequilibria. Geochim. Cosmochim. Acta, 63, 4119–4138.CrossRefGoogle Scholar
  73. Stracke, A., M. Bizimis, and V.J.M. Salters (2003) Recycling oceanic crust: Quantitative constraints. Geochem. Geophys. Geosyst., 4, doi:10.1029/2001GC000223.Google Scholar
  74. Tackley, P.J., D.J. Stevenson, G.A. Glatzmaier, and G. Shubert (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature, 361, 699–704.CrossRefGoogle Scholar
  75. Takahashi, E., T. Shimazaki, Y. Tsuzaki, and H. Yoshida (1993) Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philos. Trans. R. Soc. Lond. A, 342, 105–120.CrossRefGoogle Scholar
  76. Tatsumi, Y., and T. Kogiso (2003) The subduction factory: Its role in the evolution of Earth’s crust and mantle. In Larter, R.D., and P.T. Leat (eds.) Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes, Geological Society of London, London, pp. 55–80.Google Scholar
  77. Tejada, M.L., J.J. Mahoney, C.R. Neal, R.A. Duncan, and M.G. Petterson (2002) Basement geochemistry and geochronology of central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J. Petrol., 43, 449–484.CrossRefGoogle Scholar
  78. Wallace, P.J. (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Lett., 25, 3639–3642.CrossRefGoogle Scholar
  79. Watson, S., and D. McKenzie (1991) Melt generation by plumes: A study of Hawaiian volcanism. J. Petrol., 32, 501–537.Google Scholar
  80. White, W.M., and A.W. Hofmann (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 296, 821–825.CrossRefGoogle Scholar
  81. Utsunomiya, A., T. Ota, B.F. Windley, N. Suzuki, Y. Uchio, K. Munekata, and S. Maruyama (2007) History of the Pacific superplume: Implications for the Pacific paleogeography since the Late Proterozoic. In Yuen, D.A., S. Maruyama, S. Karato, and B.F. Windley (eds.) Superplumes: Beyond Plate Tectonics, Springer, Dordrecht, pp. 363–408.Google Scholar
  82. Yasuda, A., T. Fujii, and K. Kurita (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res., 99, 9401–9414.CrossRefGoogle Scholar
  83. Zindler, A., and S. Hart (1986) Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493–571.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Tetsu Kogiso
    • 1
  1. 1.Institute for Research on Earth Evolution (IFREE)Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations