Post-Perovskite Phase Transition and the Nature of the Dʺ Layer

  • Kei Hirose


Lower Mantle Basaltic Crust Seismic Discontinuity Clapeyron Slope Lowermost Mantle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badro, J., J.P. Rueff, G. Vanko, G. Monaco, G. Fiquet, and F. Guyot (2004) Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383–386.CrossRefGoogle Scholar
  2. Boehler, R. (1996) Melting temperature of the Earth’s mantle and core: Earth’s thermal structure. Annu. Rev. Earth Planet. Sci., 24, 15–40.CrossRefGoogle Scholar
  3. Brandon, A., R. Walker, J. Morgan, M. Norman, and H.M. Prichard (1998) Coupled 186Os and 187Os evidence for core-mantle interaction. Science, 280, 1570–1573.CrossRefGoogle Scholar
  4. Christensen, U.R., and A.W. Hofmann (1994) Segregation of subducted oceanic crust in the convecting mantle. J. Geophys. Res., 99, 19867–19884, doi:10.1029/94JB03403.CrossRefGoogle Scholar
  5. Dziewonski, A.M., and D.L. Anderson (1981) Preliminary reference Earth model. Phys. Earth. Planet. Inter., 25, 297–356.CrossRefGoogle Scholar
  6. Fei, Y., J.V. Orman, J. Li, W.V. Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi (2004) Experimentally determined postspinel transformation boundary in Mg2SiO3 using MgO as an internal pressure standard and its geophysical implications. J. Geophys. Res., 109, B02305, doi:10.1029/2003JB002562.CrossRefGoogle Scholar
  7. Harder, H., and U.R. Christensen (1996) A one-plume model of Martian mantle convection. Nature, 380, 507–509.CrossRefGoogle Scholar
  8. Hernlund, J.W., C. Thomas, and P.J. Tackley (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature, 434, 882–886.CrossRefGoogle Scholar
  9. Hirose, K., Y. Fei, Y. Ma, and H. Mao (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 53–56.CrossRefGoogle Scholar
  10. Hirose, K., and Y. Fei (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim. Cosmochim. Acta, 66, 2099–2108.CrossRefGoogle Scholar
  11. Hirose, K., N. Shimizu, W. van Westrenen, and Y. Fei (2004) Trace element partitioning in Earth’s lower mantle and implications for the geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter., 146, 249–260.CrossRefGoogle Scholar
  12. Hirose, K., N. Takafuji, N. Sata, and Y. Ohishi (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 237, 239–251.CrossRefGoogle Scholar
  13. Hirose, K., R. Sinmyo, N. Sata, and Y. Ohishi (2006a) Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO internal pressure standards. Geophys. Res. Lett., 33, L01310, doi:10.1029/2005GL024468.CrossRefGoogle Scholar
  14. Hirose, K., S. Karato, V. Cormier, J. Brodholt, and D. Yuen (2006b) Unsolved problems in the lowermost mantle. Geophys. Res. Lett., 33, L12S01, doi:10.1029/2006GL025691.CrossRefGoogle Scholar
  15. Hofmann, A. W. (1997) Mantle geochemistry: The message from oceanic volcanism. Nature, 385, 219–229.CrossRefGoogle Scholar
  16. Humayun, M., L. Qin, and M. Norman (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science, 306, 91–94.CrossRefGoogle Scholar
  17. Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature, 430, 442–445.CrossRefGoogle Scholar
  18. Irifune, T., and A.E. Ringwood (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet. Sci. Lett., 117, 101–110.CrossRefGoogle Scholar
  19. Ishii, M., and J. Tromp (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science, 285, 1231–1236.CrossRefGoogle Scholar
  20. Ito, E., A. Kubo, T. Katsura, and M.J. Walter (2004) Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter., 143–144, 397–406.CrossRefGoogle Scholar
  21. Karato, S.-I., and B.B. Karki (2001) Origin of lateral variation of seismic wave velocities and density in the deep mantle. J. Geophys. Res., 106, 21771–21784, doi:10.1029/2001JB000214.CrossRefGoogle Scholar
  22. Kelly, K.A., T. Plank, L. Farr, J. Ludden, and S. Hubert (2005) Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett., 234, 369–383.CrossRefGoogle Scholar
  23. Kesson, S.E., J.D. Fitz Gerald, and J.M.G. Shelley (1994) Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature, 372, 767–769.CrossRefGoogle Scholar
  24. Kesson, S.E., J.D. Fitz Gerald, and J.M. Shelley (1998) Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393, 252–255.CrossRefGoogle Scholar
  25. Kobayashi, Y., T. Kondo, E. Ohtani, N. Hirao, N. Miyajima, T. Yagi, T. Nagase, and T. Kikegawa (2005) Fe-Mg partitioning between (Mg,Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett., 32, L19301.CrossRefGoogle Scholar
  26. Knittle, E., and R. Jeanloz (1991) Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.CrossRefGoogle Scholar
  27. Lay, T., and D.V. Helmberger (1983) A lower mantle S-wave triplication and the velocity structure of Dʺ. Geophys. J. R. Astron. Soc., 75, 799–837.Google Scholar
  28. Lay, T., Q. Williams, and E. Garnero (1998) The core-mantle boundary layer and deep mantle dynamics. Nature, 392, 461–468.CrossRefGoogle Scholar
  29. Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound velocity, and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S. et al. (ed.) Earth’s Deep Interior, AGU, Washington, D.C., pp. 63–88.Google Scholar
  30. Matyska, C., and D.A. Yuen (2005) The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet. Sci. Lett., 234, 71–81.CrossRefGoogle Scholar
  31. Murakami, M., K. Hirose, K. Kawamura, N. Sata, and Y. Ohishi (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRefGoogle Scholar
  32. Murakami, M., K. Hirose, N. Sata, and Y. Ohishi (2005) Post-perovskite phase transition and crystal chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett., 32, L03304, doi:10.1029/2004GL021956.CrossRefGoogle Scholar
  33. Nakagawa, T., and P. Tackley (2004) Effects of a perovskite–post perovskite phase change mantle boundary in compressible mantle. Geophys. Res. Lett., 31, L16611, doi:10.1029/2004GL020648.CrossRefGoogle Scholar
  34. Nakagawa, T., and P.J. Tackley (2005) The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core–mantle boundary. Earth Planet. Sci. Lett., 238, 204–216.CrossRefGoogle Scholar
  35. Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.CrossRefGoogle Scholar
  36. Ohtani, E., and M. Maeda (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet. Sci. Lett., 193, 69–75.CrossRefGoogle Scholar
  37. Ono, S., E. Ito, and T. Katsura (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett., 190, 57–63.CrossRefGoogle Scholar
  38. Ono, S., and A.R. Oganov (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet. Sci. Lett., 236, 914–932.CrossRefGoogle Scholar
  39. Romanowicz, B. (2001) Can we resolve 3D density heterogeneity in the lower mantle? Geophys. Res. Lett., 28, 1107–1110.CrossRefGoogle Scholar
  40. Schubert, G., G. Masters, P. Olsen, and P. Tackley (2004) Superplumes or plume clusters? Phys. Earth Planet. Inter., 146, 147–162.CrossRefGoogle Scholar
  41. Speziale, S., C. Zha, T.S. Duffy, R.J. Hemley, and H.K. Mao (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. J. Geophys. Res., 106, 515–528.CrossRefGoogle Scholar
  42. Stackhouse, S., J.P. Brodholt, J. Wookey, J.-M. Kendall, and G.D. Price (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet. Sci. Lett., 230, 1–10.CrossRefGoogle Scholar
  43. Takafuji, N., K. Hirose, M. Mitome, Y. Bando (2005) Solubilities of O and Si in liquid iron in equilibrium with (Mg,Fe)SiO3 perovskite and the light elements in the core. Geophys. Res. Lett., 32, L06313, doi:10.1029/2005GL022773.CrossRefGoogle Scholar
  44. Thomas, C., J.M. Kendall, and J. Lowman (2004a) Lower-mantle seismic discontinuities and the thermal morphology of subducted slabs. Earth Planet. Sci. Lett., 225, 105–113.CrossRefGoogle Scholar
  45. Thomas, C., E.J. Garnero, and T. Lay (2004b) High-resolution imaging of lowermost mantle structure under the Cocos plate. J. Geophys. Res., 109, B08307, doi:10.1029/2004JB003013.CrossRefGoogle Scholar
  46. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004a) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.CrossRefGoogle Scholar
  47. Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004b) Elasticity of post-perovskite MgSiO3. Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.CrossRefGoogle Scholar
  48. Weinstein, S.A. (1995) The effects of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets. J. Geophys. Res., 100, 11719–11728, 10.1029/95JE00710.CrossRefGoogle Scholar
  49. Wen, L. (2001) Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth’s mantle beneath the Indian Ocean. Earth Planet. Sci. Lett., 194, 83–95.CrossRefGoogle Scholar
  50. Wookey, J., S. Stackhouse, J.M. Kendall, J. Brodholt, and G.D. Price (2005) Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature, 438, 1004–1007.CrossRefGoogle Scholar
  51. Wysession, M.E., T. Lay, J. Revenaugh, Q. Williams, E. Garnero, R. Jeanloz, and L. Kellog (1998) The Dʺ discontinuity and its implications. In Gurnis, M. et al. (ed.) The Core-Mantle Boundary Region, Geodynamics Ser., Vol. 28, AGU, Washington, D.C., pp. 273–297.Google Scholar
  52. Zerr, A., A. Diegeler, and R. Boehler (1998) Solidus of Earth’s deep mantle. Science, 281, 243–246.CrossRefGoogle Scholar
  53. Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: Insight into deep earth dynamics. Phys. Earth Planet. Inter., 146, 3–34.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kei Hirose
    • 1
  1. 1.Department of Earth and Planetary SciencesTokyo Institute of TechnologyMeguroJapan

Personalised recommendations