Skip to main content

Tharsis Superplume and the Geological Evolution of Early Mars

  • Chapter
Book cover Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, Y. (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter., 100, 27–39.

    Article  Google Scholar 

  • Acuna, M.H. et al. (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284, 790–793.

    Article  Google Scholar 

  • Agee, C.B. (2004) Earth science: Hot metal. Nature, 429, 33–35.

    Article  Google Scholar 

  • Anderson, R.C., J.M. Dohm, M.P. Golombek, A.F.C. Haldemann, B.J. Franklin, K.L. Tanaka, J. Lias, and B. Peer (2001) Primary centers and secondary concentrations of tectonic activity through time for the western hemisphere of Mars. J. Geophys. Res., 106, 20563–20585.

    Article  Google Scholar 

  • Baker, V.R. (1982) The Channels of Mars, University of Texas Press, Austin, Texas, pp. 1–198.

    Google Scholar 

  • Baker, V.R. (2001) Water and the Martian landscape. Nature, 412, 228–236.

    Article  Google Scholar 

  • Baker, V.R., S. Maruyama, and J.M. Dohm (2002) A theory of plate tectonics and subsequent long-term superplume activity on Mars. In International Workshop: Role of superplumes in the Earth system, Tokyo Inst. of Technology, Tokyo, Japan, pp. 312–316. (Published in the journal Electronic Geosciences, 8, on the web at http://194.94.42.12/licensed_materials/10069/free/conferen/superplu/index.html

    Google Scholar 

  • Baker, V.R., R.G. Strom, V.C. Gulick, J.S. Kargel, G. Komatsu, and V.S. Kale (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589–594.

    Article  Google Scholar 

  • Bandfield, J.L., P.R. Christensen, V.E. Hamilton, and H.Y. McSween, Jr. (2004) Identification of a Quartz and Na-Feldspar Surface Mineralogy in Syrtis Major. Lunar Planet. Sci. Conf. XXXV, Abstract 1449.

    Google Scholar 

  • Bandfield, J.L., V.H. Hamilton, and P.R. Christensen (2000) A global view of Martian surface composition from MGS-TES. Science, 287, 1626–1630.

    Article  Google Scholar 

  • Barley, M.E., A.L. Pickard, and P.J. Sylvester (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature, 385, 55–58.

    Article  Google Scholar 

  • Berman, D.C., and W.K. Hartmann (2002) Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus, 159, 1–17.

    Article  Google Scholar 

  • Boehler, R. (1996) Melting temperature of the Earth’s mantle and core: Earth’s thermal Structure. Annu. Rev. Earth Planet. Sci., 24, 15–40.

    Article  Google Scholar 

  • Boynton, W.V. et al. (2002) Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science, 297, 81–85.

    Article  Google Scholar 

  • Burr, D.M., J.A. Grier, A.S. McEwen, and L.P. Keszthelyi (2002) Repeated aqueous flooding from the Cerberus Fossae: Evidence for very recently extant, deep ground- water on Mars. Icarus, 159, 53–73.

    Article  Google Scholar 

  • Campbell, I.K., and S.R. Taylor (1983) No water, no granites–no oceans, no continents. Geophys. Res. Lett., 10, 1061–1064.

    Google Scholar 

  • Carr, M.H. (1996) Water on Mars, Oxford University Press, New York, pp. 1–229.

    Google Scholar 

  • Christensen, P.R. et al. (2000) Identification of a basaltic component of the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res., 105, 9609–9621.

    Article  Google Scholar 

  • Christensen, P.R. et al. (2001a) Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation, description and surface science results. J. Geophys. Res., 106, 23823–23871.

    Article  Google Scholar 

  • Christensen, P.R. et al. (2001b) Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on Mars. J. Geophys. Res., 106, 23873–23885.

    Article  Google Scholar 

  • Clifford, S.M. (1993) A model for the hydrologic and climate behavior of water on Mars. J. Geophys. Res., 98, 10973–11016.

    Article  Google Scholar 

  • Connerney, J.E.P. et al. (1999) Magnetic lineations in the ancient crust of Mars. Science, 284, 794–798.

    Article  Google Scholar 

  • Craddock, R.A., and A.D. Howard (2002) The case for rainfall on a warm, wet early Mars. J. Geophys. Res., 107, doi:10.1029/2001JE001505.

    Google Scholar 

  • Craddock, R.A., and T.A. Maxwell (1990) Resurfacing of the Martian highlands in the Amenthes and Tyrrhena region. J. Geophys. Res., 95, 14265–14780.

    Google Scholar 

  • Craddock, R.A., and T.A. Maxwell (1993) Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res., 98, 3453–3468.

    Google Scholar 

  • Dohm, J.M., R.C. Anderson, and K.L. Tanaka (1998) Digital structural mapping of Mars. Astron. & Geophys., 39, 3.20–3.22.

    Google Scholar 

  • Dohm, J.M., and K.L. Tanaka (1999) Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution. Planet. Space Sci., 47, 411–431.

    Article  Google Scholar 

  • Dohm, J.M., K.L. Tanaka, and T.M. Hare (2001a) Geologic map of the Thaumasia region of Mars. US Geol. Survey Map I-2650.

    Google Scholar 

  • Dohm, J.M. et al. (2001b) Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 32943–32958.

    Article  Google Scholar 

  • Dohm, J.M. et al. (2001c) Latent activity for western Tharsis, Mars: Significant flood record exposed. J. Geophys. Res., 102, 12301–12314.

    Article  Google Scholar 

  • Dohm, J.M. et al. (2004) Ancient giant basin/aquifer system in the Arabia region, Mars. Lunar Planet. Sci. Conf. XXXV, Abstract 1209.

    Google Scholar 

  • Fairén, A.G., and J.M. Dohm (2004) Age and origin of the lowlands of Mars. Icarus, 169, 277–284.

    Article  Google Scholar 

  • Fairén, A.G., J.M. Dohm, V.R. Baker, M.A. de Pablo, J. Ruiz, J.C. Ferris, and R.C. Anderson (2003) Episodic flood inundations of the northern plains of Mars. Icarus, 165, 53–67.

    Article  Google Scholar 

  • Fairén, A.G., D. Fernández-Remolar, J.M. Dohm, V.R. Baker, and R. Amils (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature, 431, 423–426.

    Article  Google Scholar 

  • Fairén, A.G., J. Ruiz, and F. Angula (2002) An origin for the linear magnetic anomalies on Mars through accretion of terranes: Implications for dynamo timing. Icarus, 160, 220–223.

    Article  Google Scholar 

  • Fisk, M.R., and S.J. Giovannoni (1999) Source of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res., 104, 11805–11815.

    Article  Google Scholar 

  • Frey, H.V., J.H. Roark, K.M. Shockey, E.L. Frey, and S.E.H. Sakimoto (2002) Ancient lowlands on Mars. Geophys. Res. Lett., 29, doi:10.1029/2001GL013832.

    Google Scholar 

  • Gulick, V.C., and V.R. Baker (1990) Origin and evolution of valleys on Martian volcanoes. J. Geophys. Res., 95, 14325–14344.

    Google Scholar 

  • Halliday A.N. et al. (2001) Accretion, composition and early differentiation of Mars. Space Sci. Rev., 96, 197–230.

    Article  Google Scholar 

  • Harder, H., and U.R. Christensen (1996) A one-plume model of Martian mantle convection. Nature, 380, 507–509.

    Article  Google Scholar 

  • Hartmann, W.K., and G. Neukum (2001) Cratering chronology and the evolution of Mars. Space Sci. Rev., 96, 165–194.

    Article  Google Scholar 

  • Head III, J.W. et al. (1999) Possible ancient oceans on Mars: Evidence from Mars Orbiter Laser Altimeter data. Science, 286, 2134–2137.

    Article  Google Scholar 

  • Hiller, K. (1979) Geologic map of the Amenthes Quadrangle, Mars. U.S. Geol. Sur. Map, I-1110.

    Google Scholar 

  • Irvine, T.N. (1989) A global convection framework: Concepts of symmetry, stratification and system in the Earth’s dynamic structure. Econ. Geol., 84, 2059–2114.

    Article  Google Scholar 

  • Iwamori, S. (1998) Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett., 160, 65–80.

    Article  Google Scholar 

  • Jons, H.P. (1985) Late sedimentation and late sediments in the northern lowlands of Mars. Lunar Planet. Sci., 16, 414–415.

    Google Scholar 

  • Kargel, J.S. (2004) Mars: A Warmer Wetter Planet, Springer, London, pp. 1–557.

    Google Scholar 

  • Kaula, W.M. (1975) The seven ages of a planet. Icarus, 26, 1–15.

    Article  Google Scholar 

  • Kerr, R.A. (2004a) A wet early Mars seen in salty deposits. Science, 303, 1450.

    Article  Google Scholar 

  • Kerr, R.A. (2004b) Life or volcanic belching on Mars. Science, 303, 1953.

    Article  Google Scholar 

  • Kitajima, K. et al. (2001) Seafloor hydrothermal alteration of an Archaean mid-ocean ridge. J. Metamorphic Geol., 19, 581–597.

    Article  Google Scholar 

  • Kristjansson, L., and H. Johanesson (1999) Secular variation and reversals in a composite 2.5 km thick lava section in central western Iceland. Earth Planets Space, 51, 261.

    Google Scholar 

  • Lucchitta, B.K., H.M. Ferguson, and C. Summers (1986) Sedimentary deposits in the northern lowland plains, Mars. J. Geophys. Res., 91, E166-E174.

    Google Scholar 

  • Malin, M.C., and K.S. Edgett (2000a) Sedimentary rocks of early Mars. Science, 290, 1927–1937.

    Article  Google Scholar 

  • Malin, M.C., and K.S. Edgett (2000b) Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 2330–2335.

    Article  Google Scholar 

  • Malin, M.C., and K.S. Edgett (2001) Mars Global Surveyor Orbiter Camera: Inter-planetary cruise through primary mission. J. Geophys. Res., 106, 23429–23570.

    Article  Google Scholar 

  • Maruyama, S. (1994) Plume tectonics. J. Geol. Soc. Jpn., 100, 24–49.

    Google Scholar 

  • McEwen, A.S., M.C. Malin, M.H. Carr, and W.K. Hartmann (1999) Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584–586.

    Article  Google Scholar 

  • McKay, D.S. et al. (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924–930.

    Article  Google Scholar 

  • McKenzie, D.P., and M.J. Bickle (1988) The volume and composition of melt generated by extension of the lithosphere. J. Petrol., 29, 625–679.

    Google Scholar 

  • McSween, H.Y., Jr. et al. (2001) Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature, 409, 487–490.

    Article  Google Scholar 

  • McSween, H.Y., Jr., T.L. Grove, and M.B. Wyatt (2003) Constaints on the composition and petrogenesis of the Martian crust. J. Geophys. Res., 108, doi:10.1029/2003JE002175.

    Google Scholar 

  • Mege, D., and P. Masson (1996) A plume tectonics model for the Tharsis province, Mars. Planet. Space Sci. 44, 1499–1546.

    Article  Google Scholar 

  • Moore, J.M. (2004) Mars: Blueberry fields for ever. Nature, 428, 711–712.

    Article  Google Scholar 

  • Nimmo, F. (2000) Dike intrusion as a possible cause of linear Martian magnetic anomalies. Geology, 28, 391–394.

    Article  Google Scholar 

  • Nimmo, F., and D.J. Stevenson (2000) Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., 105, 11969–11979.

    Article  Google Scholar 

  • Nyquist, L.E. et al. (2001) Ages and geologic histories of Martian meteorites. Space Sci. Rev., 96, 105–164.

    Article  Google Scholar 

  • O’Neill, H., D. Canil, and D.C. Rubie (1998) Oxide-metal equilibria to 2500°C and 25 Gpa: Implications for core formation and the light component of the Earth’s core. J. Geophys. Res., 103, 12239–12248.

    Article  Google Scholar 

  • Parker, T.J., R.S. Saunders, and D.M. Schneeberger (1989) Transitional morphology in the west Deuteronilus Mensae region of Mars: Implications for the modification of the lowland/upland boundary. Icarus, 82, 111–145.

    Article  Google Scholar 

  • Phillips, R.J. et al. (2001) Ancient geodynamics and global change hydrology on Mars. Science, 291, 2587–2591.

    Article  Google Scholar 

  • Reese, C.C., V.S. Solomatov, and L.-N. Moresi (1998) Heat transport efficiency for stagnant lid convection with dislocation viscosity: Application to Mars and Venus. J. Geophys. Res., 103, 13643–13657.

    Article  Google Scholar 

  • Reese, C.C., V.S. Solomatov, and J.R. Baumgardner (2002) Survival of impact-induced thermal anomalies in the Martian mantle. J. Geophys. Res., 107(E7), 5054, doi:10.1029/2000JE001474.

    Article  Google Scholar 

  • Regenauer-Lieb, K., D.A. Yuen, and J. Branlund (2001) The initiation of subduction: Criticality by addition of water? Science, 294, 578–580.

    Article  Google Scholar 

  • Rubie, D.C., C.K. Gessmann, and D.J. Frost (2004) Partitioning of oxygen during core formation on the Earth and Mars. Nature, 429, 58–61.

    Article  Google Scholar 

  • Schaefer, M.W. (1993) Aqueous geochemistry on early Mars. Geochim. Cosmochim. Acta., 57, 4619–4625.

    Article  Google Scholar 

  • Schultz, R.A., and K.L. Tanaka (1994) Lithospheric-scale buckling and thrust structures on Mars: The Coprates rise and south Tharsis ridge belt. J. Geophys. Res., 99, 8371–8385.

    Article  Google Scholar 

  • Scott, D.H. (1978) Mars, highlands-lowlands: Viking contribution to Mariner relative age studies. Icarus, 34, 479–485.

    Article  Google Scholar 

  • Scott, D.H., J.M. Dohm, and J.W. Rice (1995) Map of Mars showing channels and possible paleolake basins. US Geol. Survey Map I-2461.

    Google Scholar 

  • Sleep, N.H. (1994) Martian plate tectonics. J. Geophys. Res., 99, 5639–5655.

    Article  Google Scholar 

  • Sleep, N.H. (2000) Evolution of the mode of convection within terrestrial planets. J. Geophys. Res., 105, 17563–17578.

    Article  Google Scholar 

  • Spohn, T. et al. (2001) Geophysical constraints on the evolution of Mars. Space Sci. Rev., 96, 231–262.

    Article  Google Scholar 

  • Thomas-Keptra, K.L. et al. (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proc. Natl. Acad Sci. USA, 98, 2164–2169.

    Article  Google Scholar 

  • Warren, P.H., and G.W. Kallemeyn(1996) Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: Evidence of heterogeneity, possibly time linked, in the mantle of Mars. Meteroritics Plan. Sci., 31, 97–105.

    Google Scholar 

  • Watts, A.W., R. Greeley, and H.J. Melosh (1991) The formation of terrains antipodal to major impacts. Icarus, 93, 159–168.

    Article  Google Scholar 

  • Weiss, B.P. et al. (2001) Records of an ancient Martian magnetic field in ALH84001. Lunar Planet. Sci. Conf. XXXII, Abstract 1244.

    Google Scholar 

  • Wilhelms, D.E., and S.W. Squyres (1984) The martian hemispheric dichotomy may be due to a giant impact. Nature, 309, 138–140.

    Article  Google Scholar 

  • Wise, D.U., M.P. Golombek, and G.E. McGill (1979) Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism. Icarus, 38, 456–472.

    Article  Google Scholar 

  • Zuber, M.T. (2001) The crust and mantle of Mars. Nature, 412, 220–227.

    Article  Google Scholar 

  • Zuber, M.T. et al. (2000) Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788–1793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Baker, V., Maruyama, S., Dohm, J. (2007). Tharsis Superplume and the Geological Evolution of Early Mars. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_16

Download citation

Publish with us

Policies and ethics