Skip to main content

Microscopic Models for the Effects of Hydrogen on Physical and Chemical Properties of Earth Materials

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaogi, M., E. Ito, and A. Navrotsky (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res., 94, 15671–15685.

    Google Scholar 

  • Ando, K. (1989) Self-diffusion in oxides. In Karato, S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 57–82.

    Google Scholar 

  • Bai, Q., and D.L. Kohlstedt (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys. Chem. Miner., 19, 460–471.

    Article  Google Scholar 

  • Béjina, F., O. Jaoul, and R.C. Liebermann (2003) Diffusion at high pressure: A review. Phys. Earth Planet. Inter., 139, 3–20.

    Article  Google Scholar 

  • Bell, D.R., G.R. Rossman, J. Maldener, D. Endisch, and F. Rauch (2003) Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res., 108, doi: 10.1029/2001JB000679.

    Google Scholar 

  • Bercovici, D., and S. Karato (2003) Whole mantle convection and transition-zone water filter. Nature, 425, 39–44.

    Article  Google Scholar 

  • Bolfan-Casanova, N., H. Keppler, and D.C. Rubie (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett., 182, 209–221.

    Article  Google Scholar 

  • Bolfan-Casanova, N., S.J. Mackwell, H. Keppler, C. McCammon, and D.C. Rubie (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle. Geophys. Res. Lett., 29, 89-1/89-4.

    Article  Google Scholar 

  • Burnham, C.W. (1979) The importance of volatile constituents. In Yorder J.H.S. (eds.) The Evolution of the Igneous Rocks, Princeton University Press, Princeton, New Jersey, pp. 439–482.

    Google Scholar 

  • Chen, J., T. Inoue, H. Yurimoto, and D.J. Weidner (2002) Effect of water on olivine-wadsleyite phase boundary in the (Mg,Fe)2SiO4 system. Geophys. Res. Lett., 29, doi: 10.1029/2001GRL014429.

    Google Scholar 

  • Chopra, P.N., and M.S. Paterson (1984) The role of water in the deformation of dunite. J. Geophys. Res., 89, 7861–7876.

    Google Scholar 

  • Cordier, P., J.A. Weil, D.F. Howarth, and J.-C. Doukhan (1994) Influence of the (4H)Si defect on dislocation motion in crystalline quartz. Eur. J. Mineral., 6, 17–22.

    Google Scholar 

  • Corgne, A., and B.J. Wood (2002) CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophys. Res. Lett., 29, doi: 10.1029/2001GL014398.

    Google Scholar 

  • Dasgupta, R., and M.M. Hirschmann (2006) Deep melting in the Earth’s upper mantle caused by CO2. Nature, 440, 659–662.

    Article  Google Scholar 

  • Demouchy, S., E. Deloule, D.J. Frost, and H. Keppler (2005) Pressure and temperature-dependence of water solubility in iron-free wadsleyite. Am. Mineral., 90, 1084–1091.

    Article  Google Scholar 

  • Derby, B., and M.F. Ashby (1987) On dynamic recrystallization. Scripta Metallurgica, 21, 879–884.

    Article  Google Scholar 

  • Doukhan, J.-C., and M.S. Paterson (1986) Solubility of water in quartz. Bull. Mineral., 109, 193–198.

    Google Scholar 

  • Gordon, R.S. (1973) Mass transport in the diffusional creep of ionic solids. Journal of the American Ceramic Society, 65, 147–152.

    Article  Google Scholar 

  • Griggs, D.T. (1974) A model of hydrolytic weakening in quartz. J. Geophys. Res., 79, 1653–1661.

    Google Scholar 

  • Heggie, M., and R. Jones (1986) Models of hydrolytic weakening in quartz. Philosophical Magazine, A., 53, L65-L70.

    Article  Google Scholar 

  • Hier-Majumder, S., I.M.Anderson, and D.L. Kohlstedt (2005) Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res., 110, doi: 10.1029/2004JB003292.

    Google Scholar 

  • Hirose, K., N. Shimizu, W. Van Westrenen, and Y. Fei (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter., 146, 249–260.

    Article  Google Scholar 

  • Hirth, G., and D.L. Kohlstedt (1996) Water in the oceanic upper mantle-implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.

    Article  Google Scholar 

  • Huang, X., Y. Xu, and S. Karato (2005) Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature, 434, 746–749.

    Article  Google Scholar 

  • Ingrin, J., and H. Skogby (2000) Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. Eur. J. Mineral., 12, 543–570.

    Google Scholar 

  • Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth Planet. Inter., 85, 237–263.

    Article  Google Scholar 

  • Inoue, T., and H. Sawamoto (1992) High pressure melting of pyrolite under hydrous condition and its geophysical implications. In Syono, Y., and M.H. Manghnani (eds.) High-Pressure Research: Application to Earth and Planetary Sciences, American Geophysical Union, Washington DC, pp. 323–331.

    Google Scholar 

  • Inoue, T., D.J. Weidner, P.A. Northrup, and J.B. Parise (1998) Elastic properties of hydrous ringwoodite (γ-phase) of Mg2SiO4. Earth Planet. Sci. Lett., 160, 107–113.

    Article  Google Scholar 

  • Jackson, I., J.D. Fitz Gerald, and H. Kokkonen (2000) High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth’s inner core. J. Geophys. Res., 105, 23605–23634.

    Article  Google Scholar 

  • Jackson, I., J.D. Fitz Gerald, U.H. Faul, and B.H. Tan (2002) Grain-size sensitive seismic-wave attenuation in polycrystalline olivine. J. Geophys. Res., 107, doi: 10.1029/2002JB001225.

    Google Scholar 

  • Jackson, I., M.S. Paterson, and J.D. Fitz Gerald (1992) Seismic wave dispersion and attenuation in Åheim dunite. Geophys. J. Int., 108, 517–534.

    Article  Google Scholar 

  • Jacobsen, S.D., J.R. Smyth, H.A. Spetzler, C.M. Holl, and D.J. Frost (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys. Earth Planet. Inter., 143/144, 47–56.

    Article  Google Scholar 

  • Jung, H., and S. Karato (2001a) Effect of water on the size of dynamically recrystallized grains in olivine. J. Struct. Geol., 23, 1337–1344.

    Article  Google Scholar 

  • Jung, H., and S. Karato (2001b) Water-induced fabric transitions in olivine. Science, 293, 1460–1463.

    Article  Google Scholar 

  • Jung, H., I. Katayama, Z. Jiang, T. Hiraga, and S. Karato (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics, 421, 1–22.

    Article  Google Scholar 

  • Karato, S. (1974) Point defects and transport properties of olivine. MSc, University of Tokyo.

    Google Scholar 

  • Karato, S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature, 319, 309–310.

    Article  Google Scholar 

  • Karato, S. (1989) Defects and plastic deformation in olivine. In Karato S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 176–208.

    Google Scholar 

  • Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347, 272–273.

    Article  Google Scholar 

  • Karato, S. (1995) Effects of water on seismic wave velocities in the upper mantle. Proc. Jpn. Acad. 71, 61–66.

    Google Scholar 

  • Karato, S. (2000) Rheology and Dynamics of the Solid Earth, University of Tokyo Press.

    Google Scholar 

  • Karato, S. (2003) Mapping water content in Earth’s upper mantle. In Eiler, J.E. (ed.) Inside the Subduction Factory, American Geophysical Union, pp. 135–152.

    Google Scholar 

  • Karato, S., D. Bercovici, G. Leahy, G. Richard, and Z. Jing (2006) Transition zone water filter model for global material circulation: Where do we stand? In Jacobsen S.D., and S. van der Lee (eds.) Earth’s Deep Water Cycle, American Geophysical Union, submitted.

    Google Scholar 

  • Karato, S., and H. Jung (2003) Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philosophical Magazine, A., 83, 401–414.

    Article  Google Scholar 

  • Karato, S., M.S. Paterson, and J.D. Fitz Gerald (1986) Rheology of synthetic olivine aggregates: Influence of grain-size and water. J. Geophys. Res., 91, 8151–8176.

    Google Scholar 

  • Karato, S., and H.A. Spetzler (1990) Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys., 28, 399–421.

    Google Scholar 

  • Karato, S., S. Zhang, and H.-R. Wenk (1995) Superplasticity in Earth’s lower mantle: Evidence from seismic anisotropy and rock physics. Science, 270, 458–461.

    Article  Google Scholar 

  • Katayama, I., H. Jung, and S. Karato (2004) New type of olivine fabric at modest water content and low stress. Geology, 32, 1045–1048.

    Article  Google Scholar 

  • Katayama, I., and S. Karato (2006a) Effect of water on low-temperature high-stress rheology of olivine. J. Geophys. Res., submitted.

    Google Scholar 

  • Katayama, I., and S. Karato (2006b) Effects of temperature on the B- to C-type fabric transition in olivine. Phys. Earth Planet. Inter., in press.

    Google Scholar 

  • Kohlstedt, D.L., H. Keppler, and D.C. Rubie (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345–357.

    Article  Google Scholar 

  • Korenaga, J. (2003) Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett., 30, doi: 10.29/2003GL016982.

    Google Scholar 

  • Korenaga, J. (2005) Firm mantle plumes and the nature of the core-mantle region. Earth Planet. Sci. Lett., 232, 29–37.

    Article  Google Scholar 

  • Kubo, T., E. Ohtani, T. Kato, T. Shinmei, and K. Fujino (1998) Effects of water on the α–β transformation kinetics in San Carlos olivine. Science, 281, 85–87.

    Article  Google Scholar 

  • Kushiro, I., Y. Syono, and S. Akimoto (1968) Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res., 73, 6023–6029.

    Article  Google Scholar 

  • Li, L., D.J. Weidner, P. Ratteron, J. Chen, and M.T. Vaughan (2004) Stress measurements of deforming olivine at high pressure. Phys. Earth Planet. Inter., 143/144, 357–367.

    Article  Google Scholar 

  • Matsukage, K.N., Z. Jing, and S. Karato (2005) Density of hydrous silicate melt at the conditions of the Earth’s deep upper mantle. Nature, 438, 488–491.

    Article  Google Scholar 

  • McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.

    Article  Google Scholar 

  • Mei, S., and D.L. Kohlstedt (2000a) Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. J. Geophys. Res., 105, 21457–21469.

    Article  Google Scholar 

  • Mei, S., and D.L. Kohlstedt (2000b) Influence of water on plastic deformation of olivine aggregates, 2. Dislocation creep regime. J. Geophys. Res., 105, 21471–21481.

    Article  Google Scholar 

  • Mibe, K., T. Fujii, and A. Yasuda (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta, 66, 2273–2285.

    Article  Google Scholar 

  • Montelli, R., G. Nolet, F.A. Dahlen, G. Masters, E.R. Engdhal, and S.H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.

    Article  Google Scholar 

  • Nichols, A.R.L., M.R. Carroll, and A. Höskuldsson (2002) Is the Iceland hot spot also wet? Evidence from water contents of undegassed submarine and subglacial pillow basalts. Earth Planet. Sci. Lett., 202, 77–87.

    Article  Google Scholar 

  • Nishihara, Y., T. Shinmei, and S. Karato (2006) Grain-growth kinetics in wadsleyite: Effects of chemical environment. Phys. Earth Planet. Inter., 154, 30–43.

    Article  Google Scholar 

  • Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, and S. Karato (2005) Plastic deformation of wadsleyite and olivine at high-pressures and high-temperatures using a rotational Drickamer apparatus (RDA). J. Geophys. Res., submitted.

    Google Scholar 

  • Nolet, G., S. Karato, and R. Montelli (2005) Plume fluxes from seismic tomography: A Bayesian approach. Earth Planet. Sci. Lett., 248, 685–699.

    Article  Google Scholar 

  • Ochs, F.A.I., and R.A. Lange (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid. Contributions to Mineralogy and Petrology, 129, 155–165.

    Article  Google Scholar 

  • Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bull. Mineral., 105, 20–29.

    Google Scholar 

  • Paterson, M.S. (1989) The interaction of water with quartz and its influence in dislocation flow-an overview. In Karato S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 107–142.

    Google Scholar 

  • Paterson, M.S. (1990) Rock deformation experimentation. In Duba, A.G., W.B. Durham, J.W. Handin, and H.F. Wang (eds.) The Brittle-Ductile Transition in Rocks; The Heard Volume, American Geophysical Union, pp. 187–194.

    Google Scholar 

  • Richard, G., M. Monnereau, and J. Ingrin (2002) Is the transition zone an empty water reservoir? Inference from numerical model of mantle dynamics. Earth Planet. Sci. Lett., 205, 37–51.

    Article  Google Scholar 

  • Shito, A., S. Karato, K.N. Matsukage, and Y. Nishihara (2006) Toward mapping water content, temperature and major element chemistry in Earth’s upper mantle from seismic tomography. In Jacobsen S.D., and S.v.d. Lee (eds.) Earth’s Deep Water Cycle, American Geophysical Union.

    Google Scholar 

  • Shito, A., S. Karato, and J. Park (2004) Frequency dependence of Q in Earth’s upper mantle inferred from continuous spectra of body wave. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019582.

    Google Scholar 

  • Silver, L.A., and E.M. Stolper (1985) A thermodynamic model for hydrous silicate melts. J. Geol., 93, 161–178.

    Article  Google Scholar 

  • Smith, M.F., and F.A. Dahlen (1981) The period and Q of the Chandler wobble. Geophys. J. Roy. Astron. Soc., 64, 223–281.

    Google Scholar 

  • Smyth, J.R. (1987) β-Mg2SiO4: A potential host for water in the mantle? American Mineralogist, 75, 1051–1055.

    Google Scholar 

  • Smyth, J.R. (1994) A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): An ocean in the Earth’s interior. American Mineralogist, 79, 1021–1024.

    Google Scholar 

  • Smyth, J.R., and D.J. Frost (2002) The effect of water on the 410-km discontinuity: An experimental study. J. Geophys. Res. Lett., 29, doi: 10.129/2001GL014418.

    Google Scholar 

  • Solomatov, V.S. (1996) Can hot mantle be stronger than cold mantle? Geophys. Res. Lett., 23, 937–940.

    Article  Google Scholar 

  • Stixrude, L. (1997) Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res., 102, 14835–14852.

    Article  Google Scholar 

  • van der Meijde, M., F. Marone, D. Giardini, and S. van der Lee (2003) Seismic evidence for water deep in Earth’s upper mantle. Science, 300, 1556–1558.

    Article  Google Scholar 

  • Wallace, P. (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaii basaltic magmas. Geophys. Res. Lett., 25, 3639–3642.

    Article  Google Scholar 

  • Wang, W., and E. Takahashi (2000) Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa; Its geophysical and geochemical implications. J. Geophys. Res., 105, 2855–2868.

    Article  Google Scholar 

  • Wang, Y., W.B. Durham, I.C. Getting, and D.J. Weidner (2003) The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev. Sci. Instrum., 74, 3002–3011.

    Article  Google Scholar 

  • Williams, Q., and R.J. Hemley (2001) Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci., 29, 365–418.

    Article  Google Scholar 

  • Wood, B.J. (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268, 74–76.

    Article  Google Scholar 

  • Xu, Y., Y. Nishihara, and S. Karato (2005) Development of a rotational Drickamer apparatus for large-strain deformation experiments under deep Earth conditions. In Chen J., Y. Wang, T.S. Duffy, G. Shen, and L.F. Dobrzhinetskaya (eds.) Frontiers in High-Pressure Research: Applications to Geophysics, Elsevier, Amsterdam, pp. 167–182.

    Google Scholar 

  • Yamazaki, D., and T. Irifune (2003) Fe-Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth Planet. Sci. Lett., 216, 301–311.

    Article  Google Scholar 

  • Yamazaki, D., and S. Karato (2001a) High pressure rotational deformation apparatus to 15 GPa. Rev. Sci. Instrum., 72, 4207–4211.

    Article  Google Scholar 

  • Yamazaki, D., and S. Karato (2001b) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. American Mineralogist, 86, 385–391.

    Google Scholar 

  • Yamazaki, D., T. Kato, E. Ohtani, and M. Toriumi (1996) Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science, 274, 2052–2054.

    Article  Google Scholar 

  • Yamazaki, D., T. Kato, M. Toriumi, and E. Ohtani (2001) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter., 119, 299–309.

    Article  Google Scholar 

  • Yan, H. (1992) Dislocation Recovery in Olivine. Master of Science, University of Minnesota.

    Google Scholar 

  • Young, T.E., H.W. Green, II., A.M. Hofmeister, and D. Walker (1993) Infrared spectroscopic investigation of hydroxyl in β-(Mg,Fe)2SiO4 and coexisting olivine: Implications for mantle evolution and dynamics. Physics and Chemistry of Minerals, 19, 409–422.

    Article  Google Scholar 

  • Yusa, H., and T. Inoue (1997) Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high-pressure X ray diffraction. Geophys. Res. Lett., 24, 1831–1834.

    Article  Google Scholar 

  • Zhao, Y.-H., S.B. Ginsberg, and D.L. Kohlstedt (2004) Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contributions to Mineralogy and Petrology, 147, 155–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Karato, SI. (2007). Microscopic Models for the Effects of Hydrogen on Physical and Chemical Properties of Earth Materials. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_12

Download citation

Publish with us

Policies and ethics