Microscopic Models for the Effects of Hydrogen on Physical and Chemical Properties of Earth Materials

  • Shun-Ichiro Karato


Hydrogen Content Lower Mantle Diffusion Creep Dislocation Creep Seismic Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaogi, M., E. Ito, and A. Navrotsky (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res., 94, 15671–15685.Google Scholar
  2. Ando, K. (1989) Self-diffusion in oxides. In Karato, S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 57–82.Google Scholar
  3. Bai, Q., and D.L. Kohlstedt (1993) Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys. Chem. Miner., 19, 460–471.CrossRefGoogle Scholar
  4. Béjina, F., O. Jaoul, and R.C. Liebermann (2003) Diffusion at high pressure: A review. Phys. Earth Planet. Inter., 139, 3–20.CrossRefGoogle Scholar
  5. Bell, D.R., G.R. Rossman, J. Maldener, D. Endisch, and F. Rauch (2003) Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res., 108, doi: 10.1029/2001JB000679.Google Scholar
  6. Bercovici, D., and S. Karato (2003) Whole mantle convection and transition-zone water filter. Nature, 425, 39–44.CrossRefGoogle Scholar
  7. Bolfan-Casanova, N., H. Keppler, and D.C. Rubie (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett., 182, 209–221.CrossRefGoogle Scholar
  8. Bolfan-Casanova, N., S.J. Mackwell, H. Keppler, C. McCammon, and D.C. Rubie (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle. Geophys. Res. Lett., 29, 89-1/89-4.CrossRefGoogle Scholar
  9. Burnham, C.W. (1979) The importance of volatile constituents. In Yorder J.H.S. (eds.) The Evolution of the Igneous Rocks, Princeton University Press, Princeton, New Jersey, pp. 439–482.Google Scholar
  10. Chen, J., T. Inoue, H. Yurimoto, and D.J. Weidner (2002) Effect of water on olivine-wadsleyite phase boundary in the (Mg,Fe)2SiO4 system. Geophys. Res. Lett., 29, doi: 10.1029/2001GRL014429.Google Scholar
  11. Chopra, P.N., and M.S. Paterson (1984) The role of water in the deformation of dunite. J. Geophys. Res., 89, 7861–7876.Google Scholar
  12. Cordier, P., J.A. Weil, D.F. Howarth, and J.-C. Doukhan (1994) Influence of the (4H)Si defect on dislocation motion in crystalline quartz. Eur. J. Mineral., 6, 17–22.Google Scholar
  13. Corgne, A., and B.J. Wood (2002) CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophys. Res. Lett., 29, doi: 10.1029/2001GL014398.Google Scholar
  14. Dasgupta, R., and M.M. Hirschmann (2006) Deep melting in the Earth’s upper mantle caused by CO2. Nature, 440, 659–662.CrossRefGoogle Scholar
  15. Demouchy, S., E. Deloule, D.J. Frost, and H. Keppler (2005) Pressure and temperature-dependence of water solubility in iron-free wadsleyite. Am. Mineral., 90, 1084–1091.CrossRefGoogle Scholar
  16. Derby, B., and M.F. Ashby (1987) On dynamic recrystallization. Scripta Metallurgica, 21, 879–884.CrossRefGoogle Scholar
  17. Doukhan, J.-C., and M.S. Paterson (1986) Solubility of water in quartz. Bull. Mineral., 109, 193–198.Google Scholar
  18. Gordon, R.S. (1973) Mass transport in the diffusional creep of ionic solids. Journal of the American Ceramic Society, 65, 147–152.CrossRefGoogle Scholar
  19. Griggs, D.T. (1974) A model of hydrolytic weakening in quartz. J. Geophys. Res., 79, 1653–1661.Google Scholar
  20. Heggie, M., and R. Jones (1986) Models of hydrolytic weakening in quartz. Philosophical Magazine, A., 53, L65-L70.CrossRefGoogle Scholar
  21. Hier-Majumder, S., I.M.Anderson, and D.L. Kohlstedt (2005) Influence of protons on Fe-Mg interdiffusion in olivine. J. Geophys. Res., 110, doi: 10.1029/2004JB003292.Google Scholar
  22. Hirose, K., N. Shimizu, W. Van Westrenen, and Y. Fei (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core-mantle boundary. Phys. Earth Planet. Inter., 146, 249–260.CrossRefGoogle Scholar
  23. Hirth, G., and D.L. Kohlstedt (1996) Water in the oceanic upper mantle-implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett., 144, 93–108.CrossRefGoogle Scholar
  24. Huang, X., Y. Xu, and S. Karato (2005) Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature, 434, 746–749.CrossRefGoogle Scholar
  25. Ingrin, J., and H. Skogby (2000) Hydrogen in nominally anhydrous upper-mantle minerals: Concentration levels and implications. Eur. J. Mineral., 12, 543–570.Google Scholar
  26. Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa. Phys. Earth Planet. Inter., 85, 237–263.CrossRefGoogle Scholar
  27. Inoue, T., and H. Sawamoto (1992) High pressure melting of pyrolite under hydrous condition and its geophysical implications. In Syono, Y., and M.H. Manghnani (eds.) High-Pressure Research: Application to Earth and Planetary Sciences, American Geophysical Union, Washington DC, pp. 323–331.Google Scholar
  28. Inoue, T., D.J. Weidner, P.A. Northrup, and J.B. Parise (1998) Elastic properties of hydrous ringwoodite (γ-phase) of Mg2SiO4. Earth Planet. Sci. Lett., 160, 107–113.CrossRefGoogle Scholar
  29. Jackson, I., J.D. Fitz Gerald, and H. Kokkonen (2000) High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth’s inner core. J. Geophys. Res., 105, 23605–23634.CrossRefGoogle Scholar
  30. Jackson, I., J.D. Fitz Gerald, U.H. Faul, and B.H. Tan (2002) Grain-size sensitive seismic-wave attenuation in polycrystalline olivine. J. Geophys. Res., 107, doi: 10.1029/2002JB001225.Google Scholar
  31. Jackson, I., M.S. Paterson, and J.D. Fitz Gerald (1992) Seismic wave dispersion and attenuation in Åheim dunite. Geophys. J. Int., 108, 517–534.CrossRefGoogle Scholar
  32. Jacobsen, S.D., J.R. Smyth, H.A. Spetzler, C.M. Holl, and D.J. Frost (2004) Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys. Earth Planet. Inter., 143/144, 47–56.CrossRefGoogle Scholar
  33. Jung, H., and S. Karato (2001a) Effect of water on the size of dynamically recrystallized grains in olivine. J. Struct. Geol., 23, 1337–1344.CrossRefGoogle Scholar
  34. Jung, H., and S. Karato (2001b) Water-induced fabric transitions in olivine. Science, 293, 1460–1463.CrossRefGoogle Scholar
  35. Jung, H., I. Katayama, Z. Jiang, T. Hiraga, and S. Karato (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics, 421, 1–22.CrossRefGoogle Scholar
  36. Karato, S. (1974) Point defects and transport properties of olivine. MSc, University of Tokyo.Google Scholar
  37. Karato, S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature, 319, 309–310.CrossRefGoogle Scholar
  38. Karato, S. (1989) Defects and plastic deformation in olivine. In Karato S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 176–208.Google Scholar
  39. Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature, 347, 272–273.CrossRefGoogle Scholar
  40. Karato, S. (1995) Effects of water on seismic wave velocities in the upper mantle. Proc. Jpn. Acad. 71, 61–66.Google Scholar
  41. Karato, S. (2000) Rheology and Dynamics of the Solid Earth, University of Tokyo Press.Google Scholar
  42. Karato, S. (2003) Mapping water content in Earth’s upper mantle. In Eiler, J.E. (ed.) Inside the Subduction Factory, American Geophysical Union, pp. 135–152.Google Scholar
  43. Karato, S., D. Bercovici, G. Leahy, G. Richard, and Z. Jing (2006) Transition zone water filter model for global material circulation: Where do we stand? In Jacobsen S.D., and S. van der Lee (eds.) Earth’s Deep Water Cycle, American Geophysical Union, submitted.Google Scholar
  44. Karato, S., and H. Jung (2003) Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philosophical Magazine, A., 83, 401–414.CrossRefGoogle Scholar
  45. Karato, S., M.S. Paterson, and J.D. Fitz Gerald (1986) Rheology of synthetic olivine aggregates: Influence of grain-size and water. J. Geophys. Res., 91, 8151–8176.Google Scholar
  46. Karato, S., and H.A. Spetzler (1990) Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev. Geophys., 28, 399–421.Google Scholar
  47. Karato, S., S. Zhang, and H.-R. Wenk (1995) Superplasticity in Earth’s lower mantle: Evidence from seismic anisotropy and rock physics. Science, 270, 458–461.CrossRefGoogle Scholar
  48. Katayama, I., H. Jung, and S. Karato (2004) New type of olivine fabric at modest water content and low stress. Geology, 32, 1045–1048.CrossRefGoogle Scholar
  49. Katayama, I., and S. Karato (2006a) Effect of water on low-temperature high-stress rheology of olivine. J. Geophys. Res., submitted.Google Scholar
  50. Katayama, I., and S. Karato (2006b) Effects of temperature on the B- to C-type fabric transition in olivine. Phys. Earth Planet. Inter., in press.Google Scholar
  51. Kohlstedt, D.L., H. Keppler, and D.C. Rubie (1996) Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contributions to Mineralogy and Petrology, 123, 345–357.CrossRefGoogle Scholar
  52. Korenaga, J. (2003) Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett., 30, doi: 10.29/2003GL016982.Google Scholar
  53. Korenaga, J. (2005) Firm mantle plumes and the nature of the core-mantle region. Earth Planet. Sci. Lett., 232, 29–37.CrossRefGoogle Scholar
  54. Kubo, T., E. Ohtani, T. Kato, T. Shinmei, and K. Fujino (1998) Effects of water on the α–β transformation kinetics in San Carlos olivine. Science, 281, 85–87.CrossRefGoogle Scholar
  55. Kushiro, I., Y. Syono, and S. Akimoto (1968) Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res., 73, 6023–6029.CrossRefGoogle Scholar
  56. Li, L., D.J. Weidner, P. Ratteron, J. Chen, and M.T. Vaughan (2004) Stress measurements of deforming olivine at high pressure. Phys. Earth Planet. Inter., 143/144, 357–367.CrossRefGoogle Scholar
  57. Matsukage, K.N., Z. Jing, and S. Karato (2005) Density of hydrous silicate melt at the conditions of the Earth’s deep upper mantle. Nature, 438, 488–491.CrossRefGoogle Scholar
  58. McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.CrossRefGoogle Scholar
  59. Mei, S., and D.L. Kohlstedt (2000a) Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. J. Geophys. Res., 105, 21457–21469.CrossRefGoogle Scholar
  60. Mei, S., and D.L. Kohlstedt (2000b) Influence of water on plastic deformation of olivine aggregates, 2. Dislocation creep regime. J. Geophys. Res., 105, 21471–21481.CrossRefGoogle Scholar
  61. Mibe, K., T. Fujii, and A. Yasuda (2002) Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim. Cosmochim. Acta, 66, 2273–2285.CrossRefGoogle Scholar
  62. Montelli, R., G. Nolet, F.A. Dahlen, G. Masters, E.R. Engdhal, and S.H. Hung (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303, 338–343.CrossRefGoogle Scholar
  63. Nichols, A.R.L., M.R. Carroll, and A. Höskuldsson (2002) Is the Iceland hot spot also wet? Evidence from water contents of undegassed submarine and subglacial pillow basalts. Earth Planet. Sci. Lett., 202, 77–87.CrossRefGoogle Scholar
  64. Nishihara, Y., T. Shinmei, and S. Karato (2006) Grain-growth kinetics in wadsleyite: Effects of chemical environment. Phys. Earth Planet. Inter., 154, 30–43.CrossRefGoogle Scholar
  65. Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, and S. Karato (2005) Plastic deformation of wadsleyite and olivine at high-pressures and high-temperatures using a rotational Drickamer apparatus (RDA). J. Geophys. Res., submitted.Google Scholar
  66. Nolet, G., S. Karato, and R. Montelli (2005) Plume fluxes from seismic tomography: A Bayesian approach. Earth Planet. Sci. Lett., 248, 685–699.CrossRefGoogle Scholar
  67. Ochs, F.A.I., and R.A. Lange (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid. Contributions to Mineralogy and Petrology, 129, 155–165.CrossRefGoogle Scholar
  68. Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bull. Mineral., 105, 20–29.Google Scholar
  69. Paterson, M.S. (1989) The interaction of water with quartz and its influence in dislocation flow-an overview. In Karato S., and M. Toriumi (eds.) Rheology of Solids and of the Earth, Oxford University Press, pp. 107–142.Google Scholar
  70. Paterson, M.S. (1990) Rock deformation experimentation. In Duba, A.G., W.B. Durham, J.W. Handin, and H.F. Wang (eds.) The Brittle-Ductile Transition in Rocks; The Heard Volume, American Geophysical Union, pp. 187–194.Google Scholar
  71. Richard, G., M. Monnereau, and J. Ingrin (2002) Is the transition zone an empty water reservoir? Inference from numerical model of mantle dynamics. Earth Planet. Sci. Lett., 205, 37–51.CrossRefGoogle Scholar
  72. Shito, A., S. Karato, K.N. Matsukage, and Y. Nishihara (2006) Toward mapping water content, temperature and major element chemistry in Earth’s upper mantle from seismic tomography. In Jacobsen S.D., and S.v.d. Lee (eds.) Earth’s Deep Water Cycle, American Geophysical Union.Google Scholar
  73. Shito, A., S. Karato, and J. Park (2004) Frequency dependence of Q in Earth’s upper mantle inferred from continuous spectra of body wave. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019582.Google Scholar
  74. Silver, L.A., and E.M. Stolper (1985) A thermodynamic model for hydrous silicate melts. J. Geol., 93, 161–178.CrossRefGoogle Scholar
  75. Smith, M.F., and F.A. Dahlen (1981) The period and Q of the Chandler wobble. Geophys. J. Roy. Astron. Soc., 64, 223–281.Google Scholar
  76. Smyth, J.R. (1987) β-Mg2SiO4: A potential host for water in the mantle? American Mineralogist, 75, 1051–1055.Google Scholar
  77. Smyth, J.R. (1994) A crystallographic model for hydrous wadsleyite (β-Mg2SiO4): An ocean in the Earth’s interior. American Mineralogist, 79, 1021–1024.Google Scholar
  78. Smyth, J.R., and D.J. Frost (2002) The effect of water on the 410-km discontinuity: An experimental study. J. Geophys. Res. Lett., 29, doi: 10.129/2001GL014418.Google Scholar
  79. Solomatov, V.S. (1996) Can hot mantle be stronger than cold mantle? Geophys. Res. Lett., 23, 937–940.CrossRefGoogle Scholar
  80. Stixrude, L. (1997) Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res., 102, 14835–14852.CrossRefGoogle Scholar
  81. van der Meijde, M., F. Marone, D. Giardini, and S. van der Lee (2003) Seismic evidence for water deep in Earth’s upper mantle. Science, 300, 1556–1558.CrossRefGoogle Scholar
  82. Wallace, P. (1998) Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaii basaltic magmas. Geophys. Res. Lett., 25, 3639–3642.CrossRefGoogle Scholar
  83. Wang, W., and E. Takahashi (2000) Subsolidus and melting experiments of K-doped peridotite KLB-1 to 27 GPa; Its geophysical and geochemical implications. J. Geophys. Res., 105, 2855–2868.CrossRefGoogle Scholar
  84. Wang, Y., W.B. Durham, I.C. Getting, and D.J. Weidner (2003) The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev. Sci. Instrum., 74, 3002–3011.CrossRefGoogle Scholar
  85. Williams, Q., and R.J. Hemley (2001) Hydrogen in the deep Earth. Ann. Rev. Earth Planet. Sci., 29, 365–418.CrossRefGoogle Scholar
  86. Wood, B.J. (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268, 74–76.CrossRefGoogle Scholar
  87. Xu, Y., Y. Nishihara, and S. Karato (2005) Development of a rotational Drickamer apparatus for large-strain deformation experiments under deep Earth conditions. In Chen J., Y. Wang, T.S. Duffy, G. Shen, and L.F. Dobrzhinetskaya (eds.) Frontiers in High-Pressure Research: Applications to Geophysics, Elsevier, Amsterdam, pp. 167–182.Google Scholar
  88. Yamazaki, D., and T. Irifune (2003) Fe-Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth Planet. Sci. Lett., 216, 301–311.CrossRefGoogle Scholar
  89. Yamazaki, D., and S. Karato (2001a) High pressure rotational deformation apparatus to 15 GPa. Rev. Sci. Instrum., 72, 4207–4211.CrossRefGoogle Scholar
  90. Yamazaki, D., and S. Karato (2001b) Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. American Mineralogist, 86, 385–391.Google Scholar
  91. Yamazaki, D., T. Kato, E. Ohtani, and M. Toriumi (1996) Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science, 274, 2052–2054.CrossRefGoogle Scholar
  92. Yamazaki, D., T. Kato, M. Toriumi, and E. Ohtani (2001) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter., 119, 299–309.CrossRefGoogle Scholar
  93. Yan, H. (1992) Dislocation Recovery in Olivine. Master of Science, University of Minnesota.Google Scholar
  94. Young, T.E., H.W. Green, II., A.M. Hofmeister, and D. Walker (1993) Infrared spectroscopic investigation of hydroxyl in β-(Mg,Fe)2SiO4 and coexisting olivine: Implications for mantle evolution and dynamics. Physics and Chemistry of Minerals, 19, 409–422.CrossRefGoogle Scholar
  95. Yusa, H., and T. Inoue (1997) Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high-pressure X ray diffraction. Geophys. Res. Lett., 24, 1831–1834.CrossRefGoogle Scholar
  96. Zhao, Y.-H., S.B. Ginsberg, and D.L. Kohlstedt (2004) Solubility of hydrogen in olivine: Dependence on temperature and iron content. Contributions to Mineralogy and Petrology, 147, 155–161.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Shun-Ichiro Karato
    • 1
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations