STATISTICAL ESTIMATION METHODS FOR EXTREME HYDROLOGICAL EVENTS

  • P.H.A.J.M. van Gelder
  • W. WANG
  • J. K. VRIJLING
Conference paper
Part of the NATO Science Series book series (NAIV, volume 78)

Abstract

Abstract- In this paper an overview is given of the statistical methods which are needed to analyse observed environmetric data with a particular interest for the extreme values. The methods for trend analysis, stationarity tests, seasonality analysis, long-memory studies will be presented, critically reviewed, applied to some existing datasets, and compared.

Keywords

Entropy Covariance Autocorrelation Sowell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agiakloglou, C., Newbold, P., Wohar, M., 1993. Bias in an estimator of the fractional difference parameter. J. Time Ser. Anal., 14, 235–246.Google Scholar
  2. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, B.N. Petrov and F. Csaki (eds.). Akademia Kiado, Budapest, 267–281.Google Scholar
  3. Andrews, Donald, W.K, 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59, 817–858.MATHCrossRefMathSciNetGoogle Scholar
  4. Bartlett, M.S., 1950. Periodogram analysis and continuous spectra. Biometrika, 37, 1–16.MATHMathSciNetGoogle Scholar
  5. Beran, J., 1994. Statistics for Long-Memory Processes. Chapman & Hall, New York.MATHGoogle Scholar
  6. Bloomfield, P., 1992. Trend in global temperature. Climatic Change, 21, 1–16.CrossRefGoogle Scholar
  7. Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26:211–252.MATHMathSciNetGoogle Scholar
  8. Box, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecasting and Control (2nd edition). San Francisco: Holden-Day.MATHGoogle Scholar
  9. Burn, D.H., Hag Elnur, M.A., 2002. Detection of hydrological trend and variability. J. Hydrol. 255, 107–122.CrossRefGoogle Scholar
  10. Chen, H.L., Rao, A.R., 2002. Testing hydrological time series for stastionarity. J Hydrol. Eng., 7(2), 129–136.CrossRefGoogle Scholar
  11. Dickey, D.A., Fuller, W.A., 1979. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 423–431.CrossRefMathSciNetGoogle Scholar
  12. Dietz, E.J., Killeen., T.J., 1981. A Nonparametric Multivariate Test for Monotonic Trend With Pharmaceutical Applications. J. Am. Stat. Assoc. 76(373), 169–174.MATHCrossRefMathSciNetGoogle Scholar
  13. Douglas, E. M., Vogel, R. M., and Kroll, C. N., 2000. Trends in floods and low flows in the United States: Impact of spatial correlation, J. Hydrol., 240, 90–105.CrossRefGoogle Scholar
  14. Fu, G., Chen, S., Liu, C., Shepard, D., 2004. Hydro-climatic trends of the Yellow river basin for the last 50 years. Climatic Change 65, 149–178.CrossRefGoogle Scholar
  15. Fuller, W.A., 1976. Introduction to Statistical Time Series. New York: Wiley.MATHGoogle Scholar
  16. Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time series models. J. Time Ser. Anal., 4:221–238.MATHMathSciNetGoogle Scholar
  17. Gimeno, R., Manchado, B., Minguez, R., 1999. Stationarity tests for financial time series. Physica A 269, 72–78.CrossRefGoogle Scholar
  18. Giraitis, L., Robinson, P.M., Samarov, A., 1997. Rate optimal semiparametric estimation of the memory parameter of the Gaussian time series with long range dependence. J. Time Ser. Anal., 18 49–60.MATHCrossRefMathSciNetGoogle Scholar
  19. Granger, C. W. J., Joyeux, R., 1980. An Introduction to Long-Memory Time Series Models and Fractional Differencing, J. Time Ser. Anal., 1, 15–29.MATHMathSciNetGoogle Scholar
  20. Hamilton, J.D., 1994. Time Series Analysis, Princeton University Press, Princeton.MATHGoogle Scholar
  21. Haslett, J., Raftery, A. E., 1989. Space-time modeling with long-memory dependence: assessing Ireland’s wind power resource (with discussion). Applied Statistics 38, 1–50.CrossRefGoogle Scholar
  22. Helsel, D.R., Hirsch, R.M., 1992. Statistical Methods in Water Resources. Amsterdam: Elsevier.Google Scholar
  23. Hirsch, R.M., Slack, J.R., 1984. A Nonparametric Trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732.Google Scholar
  24. Hirsch, R.M., Slack, J.R., Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107–121.Google Scholar
  25. Hosking, J.R.M., 1981. Fractional differencing, Biometrika, 68, 165–176.MATHCrossRefMathSciNetGoogle Scholar
  26. Hurst, H.E., 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116:770–808.Google Scholar
  27. Hurvich, C.M., Bellrao, K., 1993. Asymptotics for the low-frequency ordinates of the periodogram of a long-memory time series. J. Time Ser. Anal., 14, 455–472.MATHMathSciNetGoogle Scholar
  28. Hurvich, C.M., Deo, R.S., 1999. Plug-in selection of the number of frequencies in regression estimates of the memory parameter of a long-memory time series. J. Time Ser. Anal., 20(3), 331–341.MATHCrossRefMathSciNetGoogle Scholar
  29. Hussain, S., Elbergali, A., 1999. Fractional order estimation and testing, application to Swedish temperature data. Environmetrics, 10, 339–349.CrossRefGoogle Scholar
  30. Insightful Corpration, 2001. Chapter 27 “Analyzing time series and signals” of the S-PLUS 6 for Windows Guide to Statistics, Volume 2, Insightful Corporation, Seattle, WA.Google Scholar
  31. Jain, S., Lall, U., 2001. Floods in a changing climate: Does the past represent the future? Water Resources Research, 37(12), 3193–3205.CrossRefGoogle Scholar
  32. Karagiannis, T., Molle, M., Faloutsos, M., 2004. Long-range dependence: ten years of internet traffic modeling. IEEE Internet Computing, 8(5): 57–64.CrossRefGoogle Scholar
  33. Kendall, M.G., 1938. A new measure of rank correlation. Biometrika, 30, 81–93.MATHMathSciNetGoogle Scholar
  34. Kendall, M.G., 1975. Rank Correlation Methods, Charles Griffin, London.MATHGoogle Scholar
  35. Kendziorskia, C.M., Bassingthwaighteb, J.B., Tonellato, P.J., 1999. Evaluating maximum likelihood estimation methods to determine the Hurst coefficient. Physica A, 273, 439–451.CrossRefGoogle Scholar
  36. Kundzewicz, Z.W., Graczyk, D., Maurer, T., Przymusinska, I., Radziejewski, M., Svensson, C., Szwed, M., 2004. Detection of change in world-wide hydrological time series of maximum annual flow. GRDC Report 32, GRDC, Koblenz, Germany.Google Scholar
  37. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992. Testing the null of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econometrics 54, 159–178.MATHCrossRefGoogle Scholar
  38. Lee, D., Schmidt, P., 1996. On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J. Econometrics, 73(1), 285–302.MATHCrossRefMathSciNetGoogle Scholar
  39. Lettenmaier, D.P., Wood, E.F. Chapter 26 Hydrological forecasting. In: D.R. Maidment (ed.), Handbook of Hydrology. McGraw-Hill, New York, 1993 26.1–26.30.Google Scholar
  40. Lo, A.L., 1991. Long-term memory in stock market prices. Econometrica, 59 (5), 1279–1313.MATHCrossRefMathSciNetGoogle Scholar
  41. Mandelbrot, B.B., Wallis, J.R., 1969a. Computer experiments with fractional Gaussian noises. Part 1, 2 and 3. Water Resources Research 5, 228–267.Google Scholar
  42. Mandelbrot, B.B., Wallis, J.R., 1969b. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resources Research, 5, 967–988.CrossRefGoogle Scholar
  43. Mann, H.B., 1945. Nonparametric test against trend. Econometrica, 13, 245–259.MATHCrossRefMathSciNetGoogle Scholar
  44. McLeod, A.I., 1994. Diagnostic Checking of Periodic Autoregression. J. Time Ser. Anal., 15(2), 221–233.MATHMathSciNetGoogle Scholar
  45. McLeod, A.I., 1975. Derivation of the theoretical autocovariance function of autoregressive-moving average time series. Applied Statistics, 24(2), 255–256.CrossRefMathSciNetGoogle Scholar
  46. Meade, N., Maier, M.R., 2003. Evidence of long memory in short-term interest rates. J. Forecast., 22, 553–568.CrossRefGoogle Scholar
  47. Mitosek, H.T., 2000. On stochastic properties of daily river flow processes. Journal of Hydrology, 228, 188–205.CrossRefGoogle Scholar
  48. Montanari, A., Rosso, R., Taqqu, M. S., 1997. Fractionally differenced ARIMA models applied to hydrological time series: Identification, estimation, and simulation. Water Resources Research, 33(5), 1035–1044.CrossRefGoogle Scholar
  49. Montanari, A., Rosso, R., Taqqu, M. S., 2000. A seasonal fractional ARIMA model applied to the Nile River monthly at Aswan. Water Resources Research, 36:1249–1259.CrossRefGoogle Scholar
  50. Newey, W.K., West, K.D., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 703–708.MATHCrossRefMathSciNetGoogle Scholar
  51. Ooms, M., Franses, P.H., 2001. A seasonal periodic long memory model for monthly river flows. Environmental Modelling & Software, 16, 559–569.CrossRefGoogle Scholar
  52. Priestley, M.B., 1988. Non-linear and Non-stationary Time Series Analysis. London: Academic Press.Google Scholar
  53. Rao, A.R. Bhattacharya, D., 1999. Hypothesis testing for long-term memory in hydrological series. J. Hydrol., 216(3–4), 183–196.CrossRefGoogle Scholar
  54. Said, S.E., Dickey, D., 1984. Testing for unit roots in autoregressive movingaverage models with unknown order. Biometrika, 71, 599–607.MATHCrossRefMathSciNetGoogle Scholar
  55. Schwert, G.W., 1989. Tests for unit roots: A Monte Carlo investigation. J. Business Eco. Stat. 7, 147–159.CrossRefGoogle Scholar
  56. Shin, Y., Schmidt, P., 1992. The KPSS stationarity test as a unit root test. Economics Letters, 38, 387–392.MATHCrossRefGoogle Scholar
  57. Sowell, F., 1992. Modeling Long-Run Behavior with the Fractional ARIMA Model, Journal of Monetary Economics, 29, 277–302.CrossRefGoogle Scholar
  58. Van Belle, G., Hughes, J. P., 1984. Nonparametric tests for trend in water quality. Water Resources Research, 20(1), 127–136.Google Scholar
  59. Van Gelder, P.H.A.J.M., 1999. Statistical Methods for the Risk-Based Design of Civil Structures, Communications on Hydraulic and Geotechnical Engineering, ISSN:0169–6548 00–1, 248pages.Google Scholar
  60. Vecchia, A.V., Ballerini, R., 1991. Testing for periodic autocorrelations in seasonal time series data, Biometrika, 78, 53–63.MATHCrossRefMathSciNetGoogle Scholar
  61. Vecchia, A.V., 1985. Maximum Likelihood Estimation for periodic autoregressive moving average models. Technometrics, 27, 375–384.CrossRefGoogle Scholar
  62. Von Storch, H., 1995. Misuses of statistical analysis in climate research, In: Analysis of Climate Variability: Applications of Statistical Techniques, edited by H. V. Storch and A. Navarra, Springer-Verlag, New York, pp. 11–26.Google Scholar
  63. Zhang, X., Harvey, K. D., Hogg, W. D., Yuzyk, T. R., 2001. Trends in Canadian streamflow, Water Resources Research, 37(4), 987–998.CrossRefGoogle Scholar
  64. Zivot, E., Wang, J., 2002. Modelling Financial Time Series with S-Plus. New York: Springer Verlag.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P.H.A.J.M. van Gelder
    • 1
  • W. WANG
    • 1
  • J. K. VRIJLING
    • 1
  1. 1.TU Delftthe Netherlands

Personalised recommendations