Models for National CO2 Accounting

  • Jesper Munksgaard
  • Jan Christoph Minx
  • Line Block Christoffersen
  • Lise-Lotte Pade
Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 23)

In international climate change negotiations a country is commonly held responsible for all CO2 emitted from its domestic territory. In the literature this commonly applied CO2 accounting method is called “territorial” or “producer responsibility”. Driven by concerns about carbon leakage (Wyckoff and Roop 1994; Kondo et al. 1998; Ahmad and Wyckoff 2003) and equity associated with the structure of trade relations between developing and developed countries (Schaeffer and De Sá 1996; Machado et al. 2001) as well as import and export structures of small open economies (Munksgaard and Pedersen 2001), “consumer responsibility” has been proposed as an alternative CO2 accounting method.1

From an accounting perspective the difference between the two concepts lies in the treatment of trade related emissions. Besides its domestic emissions a country can either be held responsible for CO2 embodied in exports or imports (or a combination of both). With world trade growing more than twice as fast as world GDP,2 the way how to account for CO2 emissions becomes increasingly relevant for countries in international climate change negotiations and for successful global mitigation efforts as the equity issue becomes more urgent and the threat of carbon leakage becomes more severe.

Keywords

Dioxide Steam Abate OECD Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, N. (2002). The OECD nput-output database. Paper presented at the 14th International Conference on Input-Output Techniques, 10–15 October, Montreal.Google Scholar
  2. Ahmad, N., & Wyckoff, A. (2003). Carbon dioxide emissions embodied in international trade of goods. Paris: STI Working Paper Series DSTI/DOC (2003) 15, OECD, accessed at http:// www.oecd.org/sti/working-papers
  3. Australian Greenhouse Office (1999). Australia's National Greenhouse Gas Inventory, Internet site (Australian Greenhouse Office).Google Scholar
  4. Bastianoni, S., Pulselli, F. M., & Tiezzi, E. (2004). The problem of assigning responsibility for greenhouse gas emissions. Ecological Economics, 49, 253–257.CrossRefGoogle Scholar
  5. Battjes, J. J., Noorman, K. J., & Biesiot, W. (1998). Assessing the energy intensities of imports. Energy Economics, 20, 67–83.CrossRefGoogle Scholar
  6. Bin, S., & Dowlatabadi, H. (2005). Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy Policy, 33(2), 197–208.CrossRefGoogle Scholar
  7. Blancas, A. (2000). A dynamic input-output model of NAFTA's effects on pollution. Paper presented at International Conference on Input-Output Techniques, 21–25 August, Macerata, Italy.Google Scholar
  8. Bullard, C., Penner, P., & Pilati, P. (1978). Net energy analysis: A handbook for combining process and input-output analysis. Resources and Energy, 1(3), 267–313.CrossRefGoogle Scholar
  9. Burniaux, J. M., & Truong, T. P. (2002). GTAP-E —an energy-environmental version of the GTAP model. GTAP Technical Papers 16, accessed at http://www.gtap.agecon.purdue.edu/resources/ download/1203.pdf
  10. Chang, Y. F., & Lin, S. J. (1998). Structural decomposition of industrial CO2 emissions in Taiwan. An input-output approach. Energy Policy, 26(1), 5–12.CrossRefGoogle Scholar
  11. Cohen, C., Lenzen, M., & Schaeffer, R. (2005). Energy requirements of households in Brazil. Energy Policy, 33(4), 555–562.CrossRefGoogle Scholar
  12. Common, M. S., & Salma, U. (1992). Accounting for changes in Australian carbon dioxide emissions. Energy Economics, 14(3), 217–225.CrossRefGoogle Scholar
  13. Danish Energy Agency (2003). Energy statistics 2002, Section of Statistics. Copenhagen: Danish Energy Agency.Google Scholar
  14. Daly, H. (1968). On economics as a life science. Journal of Political Economy, 76(3), 392–406.CrossRefGoogle Scholar
  15. De Haan, M. (2002). Disclosing international trade dependencies in environmental pressure indicators: The domestic consumption perspective. Paper presented at the International Input-Output Conference, 10–15 October, Montreal.Google Scholar
  16. Eurostat (2003). International trade in services EU 1992–2001-compilation guide. Luxembourg: European Commission, Office for Official Publication of the European Communities.Google Scholar
  17. Ferng, J. J. (2003). Allocating the responsibility of CO2 over-emission from the perspectives of benefit principle and ecological deficit. Ecological Economics, 46, 121–141.CrossRefGoogle Scholar
  18. Furukawa, S. (1986). International input-output analysis. Compilation and case studies of interaction between ASEAN, Korea, Japan and the United States, 1975. IDE Occasional Paper Series 21. Tokyo: Institute of Developing Economies.Google Scholar
  19. Gale, L. R. (1995). Trade liberalisation and pollution. An input-output study of carbon dioxide emissions in Mexico. Economic Systems Research, 7(3), 309–320.CrossRefGoogle Scholar
  20. Gay, P. W., & Proops, J. L. R. (1993). Carbon-dioxide production by the UK economy: An input-output assessment. Applied Energy, 44(2), 113–130.CrossRefGoogle Scholar
  21. GTAP (2003). Towards an integrated data base for assessing the potential for greenhouse gas mitigation, accessed at http://www.gtap.agecon.purdue.edu/databases/projects/Land Use GHG/ default.asp
  22. Harris, R. (2001). Methods for estimating air emissions from the production of goods imported into the UK. Eurostat Working Paper 2/2001/B/5, accessed at http://europa.eu.int/eurostat.html
  23. Hayami, H., & Kiji, T. (1997). An input-output analysis on Japan-China environmental problem. Journal of Applied Input-Output Analysis, 4, 23–47.Google Scholar
  24. Hayami, H., & Nakamura, M. (2002). CO2 emission of alternative technology and bilateral trade between Japan and Canada. KEIO Economic Observatory Discussion Paper No. 75, Japan: Keio University.Google Scholar
  25. Hayami, H., Nakamura, M., Asakura, K., & Yoshioka, K. (1999). The emissions of global warming gases: Trade between Canada and Japan. Paper presented in: Canadian Economics Association Annual Meeting, Canada: University of Toronto.Google Scholar
  26. Hendrickson, C., Horvath, A., Joshi, S., & Lave, L. B. (1998). Economic models for input-output lifecycle analysis. Environmental Science and Technology, 29(9), 184A–191A.Google Scholar
  27. Hertel, T. W. (1997). Global trade analysis: Modelling and applications. Cambridge/New York: Cambridge University Press.Google Scholar
  28. Hetherington, R. (1996). An input-output analysis of carbon dioxide emissions for the UK. Energy Conversion Management, 37(6–8), 979–984.CrossRefGoogle Scholar
  29. Joshi, S. (2000). Product environmental life cycle assessment using input-output techniques. Journal of Industrial Ecology, 3(2–3), 95–120.Google Scholar
  30. Just, J. (1974). Impacts of new energy technology using generalized input-output analysis. In M. Macrakis (Ed.), Energy. Cambridge: MIT Press.Google Scholar
  31. Kim, J. H. (2002). Changes in consumption patterns and environmental degradation in Korea. Structural Change and Economic Dynamics, 13, 1–48.CrossRefGoogle Scholar
  32. Kondo, Y., Moriguchi, Y., & Shimizu, H. (1998). CO2 emissions in Japan. Influences of imports and exports. Applied Energy, 59(2–3), 163–174.CrossRefGoogle Scholar
  33. Lenzen, M. (1998). Primary energy and greenhouse gases embodied in Australian final consumption; An input-output analysis. Energy Policy, 26(6), 495–506.CrossRefGoogle Scholar
  34. Lenzen, M. (2001). A generalised input-output multiplier calculus for Australia. Economic Systems Research, 13(1), 65–92.CrossRefGoogle Scholar
  35. Lenzen. M., & Dey, C. J. (2000). Truncation error in embodied energy analysis of basic iron and steel products. Energy, 25, 577–585.CrossRefGoogle Scholar
  36. Lenzen, M., Pade, L.-L., & Munksgaard, J. (2002). CO2 multipliers in multi-region input-output models. Paper presented to Fourteenth International Conference on Input-Output Techniques, October 10–15, 2002, Montreal.Google Scholar
  37. Lenzen, M., Pade, L.-L., & Munksgaard, J. (2004). CO2 multipliers in multi-region input-output models. Economic Systems Research, 16(4), 391–412.CrossRefGoogle Scholar
  38. Leontief, W. (1970). Environmental repercussions and the economic structure. An input-output approach. The Review of Economics and Statistics, 52(3), 262–271.CrossRefGoogle Scholar
  39. Machado, G. V. (2000). Energy use, CO2 emission and foreign trade: An IO approach applied to the Brazilian case. Paper presented at the International Conference on Input-Output Techniques, 21–25 Aug., Macerata, Italy.Google Scholar
  40. Machado, G. V., Schaeffer, R., & Worrel, E. (2001). Energy and carbon embodied in the international trade of Brazil: An input-output approach. Ecological Economics, 39, 409–424.CrossRefGoogle Scholar
  41. Madsen, B., & Jensen-Butler, C. (1999). Make and use approaches to interregional accounts and models. Economic Systems Research, 11(3), 277–299.CrossRefGoogle Scholar
  42. Matthews S. (1999). The external cost of air pollution and the environmental impact of the consumer in the US economy: Ph.D. thesis. Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh.Google Scholar
  43. Michaelis, P., Jackson, T., & Clift, R. (1998). Energy analysis of the lifecycle of steel. Energy, 23(3), 213–220.CrossRefGoogle Scholar
  44. Miller, R. E., & Blair, P. D. (1985). Input-output analysis: Foundations and extensions. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  45. Munksgaard, J., & Pedersen, K. (2001). CO2 accounts for open economies. Producer or consumer responsibility?. Energy Policy, 29, 327–334.CrossRefGoogle Scholar
  46. Munksgaard, J., Pedersen, K. A., & Wier, M. (2000). Impact of household consumption on CO2 emissions. Energy Economics, 22, 423–440.CrossRefGoogle Scholar
  47. Nielsen, A. M., & B. P. Weidema (Eds.) (2001). Input-output analysis: Shortcuts to lifecycle Data?. Paper presented at a Workshop on 29th September, Danish Environment Protection Agency, Environment Project No. 581, Copenhagen.Google Scholar
  48. OECD (2001). ITCS international trade by commodity statistics. Harmonised System 88, 1990–2000, 4 CD Rom, OECD.Google Scholar
  49. Pachauri, S., & Spreng, D. (2002). Direct and indirect energy requirements of households in India. Energy Policy, 30, 511–523.CrossRefGoogle Scholar
  50. Pade, L. L. (2004). Restructuring international trade regarding CO2 reductions — is there anything to learn from best practice?. Paper presented at IAEE annual conference, Tehera.Google Scholar
  51. Proops, J. L. R. (1977). Input-output analysis and energy intensities. A comparison of some methodologies. Applied Mathematical Modelling, 1(4), 181–188.CrossRefGoogle Scholar
  52. Proops, J. L. R., Faber, M., & Wagenhals, G. (1993). Reducing CO2 emissions: A comparative input-output study for Germany and the UK. Berlin: Springer.Google Scholar
  53. Sánchez-Chóliz, J., & Duarte, R. (2004). CO2 emissions in international trade. Evidence for Spain. Energy Policy, 32(18), 1999–2005.CrossRefGoogle Scholar
  54. Schaeffer, R., De Sá, A. L. (1996). The embodiment of carbon associated with Brazilian imports and exports. Energy Conversation Management, 37(6–8), 955–960.CrossRefGoogle Scholar
  55. Statistics Denmark (1999). Input-output tables (in Danish: input-output tabeller), Electronic file (unpublished), Danmarks Statistik.Google Scholar
  56. Statistics Denmark (2004). Danish input-output tables and analysis 2002 —imports: Employment and environment. Copenhagen: Statistics Denmark.Google Scholar
  57. Statistisches Bundesamt (2002a). Umweltökonomische Gesamtrechnung: Material- und Energieflussrechnung 2001, Fachserie 19, Reihe 5 (Metzler-Poeschel, Stuttgart, Germany).Google Scholar
  58. Statistisches Bundesamt (2002b). Volkswirtschaftliche Gesamtrechnung: Input-Output-Rechnung 1997, Fachserie 18, Reihe 2 (Metzler-Poeschel, Stuttgart, Germany).Google Scholar
  59. Statistisk Sentralbyrå (2002). Input-output tables and energy statistics, Electronic files (unpublished) (Statistics Norway).Google Scholar
  60. Statistiska Centralbyrån (2002). Input-output tables and energy statistics, Electronic files (unpublished) (Statistics Sweden).Google Scholar
  61. Treloar, G. (1997). Extracting embodied energy paths from input-output tables. Towards an input-output based hybrid energy analysis method. Economic Systems Research, 9, 375–391.CrossRefGoogle Scholar
  62. van der Linden, J. A., & Oosterhaven, J. (1995). European community intercountry input-output analysis: Construction method and main results for 1965–85. Economic Systems Research, 7(3), 249–269.CrossRefGoogle Scholar
  63. Victor, P. A. (1972). Pollution. Economy and environment. London: Allen & Unwin.Google Scholar
  64. Vringer, K., & Blok, K. (1995). The direct and indirect energy requirements of households in the Netherlands. Energy Policy, 23(10), 893–910.CrossRefGoogle Scholar
  65. Weber, C., & Perrels, A. (2000). Modelling lifestyle effects on energy demand and related emissions. Energy Policy, 28, 549–566.CrossRefGoogle Scholar
  66. Wenzel, P., Wenzel, B., & Wagner, H. J. (1999). Laenderspezifische Strombereitstellungs- und CO2 Emissionsfaktoren. Energiewirtschaftliche Tagesfragen, 49(7), 432–437.Google Scholar
  67. World Bureau of Metal Statistics (2001). Metal statistics 1990–2000. Ware, UK: World Bureau of Metal Statistics.Google Scholar
  68. Worrell, E., Price, K., Martin, N., Farla, J., & Schaeffer, R. (1997). Energy intensity in the iron and steel industry: A comparison of physical and economic indicators. Energy Policy, 25(7–9), 727–744.CrossRefGoogle Scholar
  69. Wyckoff, A. W., & Roop, J. M. (1994). The embodiment of carbon in imports of manufactured products. Implications for international agreements on greenhouse gas emissions. Energy Policy, 22(3), 187–184.CrossRefGoogle Scholar
  70. Yabe, N. (2004). An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. Energy Policy, 32, 595–610.CrossRefGoogle Scholar
  71. Young, C. E. F (2000). International trade and industrial emissions in Brazil. An input-output approach. Paper presented at the International Conference on Input-Output Techniques, 21–15 August, Macerata, Italy.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jesper Munksgaard
    • 1
  • Jan Christoph Minx
    • 2
  • Line Block Christoffersen
    • 3
  • Lise-Lotte Pade
    • 4
  1. 1.Energy Management GroupEcon Poyry ASCopenhagenDenmark
  2. 2.Stockholm Environment Institute and Head of the Project Office BerlinTechnical University BerlinGermany
  3. 3.Danish Research InstituteFood Economics in Royal Veterinary and Agricultural UniversityDenmark
  4. 4.Statistics NorwayNorway

Personalised recommendations