A Hybrid IO Energy Model to Analyze CO2 Reduction Policies: A Case of Germany

  • Stefan Vögele
  • Wilhelm Kuckshinrichs
  • Peter Markewitz
Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 23)

In recent years a lot of new energy models have been developed to analyze climate change mitigation strategies and the effects such strategies have on economic and technological development. Two main types of models can be identified: Top-down models that focus on the economic interactions within different sectors in an economy and bottom-up models that focus more on physical energy flows and technological aspects. One way of exploiting the advantages of each of these approaches is to link them to create a hybrid approach. Due to their main characteristics (e.g. high degree of disaggregating) input-output models are suitable for integrating technological data in an economic model in a special manner. Therefore, a class of models exists, linking input-output models with disaggregated energy system models. In this paper we present such a hybrid approach which consists of the input-output model Macroeconomic Information System (MIS) and the bottom-up model Instruments for Greenhouse Gas Reduction Strategies (IKARUS) — Market Allocation (MARKAL). For the hybrid MIS/IKARUS-MARKAL model a soft-linking approach is used, where the MIS model supplies data about the development of the different industry and service sectors and the IKARUS-MARKAL model calculates the energy demand of these sectors and the cost-optimal energy production structure. Two different examples for the use of the hybrid MIS/IKARUS-MARKAL approach will be presented: our first example focuses on the question of whether a given emission target (like the Kyoto one) can be reached assuming a desired growth rate and taking technological restrictions into account. The focus of the second example is on the economic impacts of a CO2 mitigation strategy. In this example, we ask which industries will benefit from the decision of policymakers to take measures to reduce CO2 emissions and which ones will lose (in the sense of economic growth).

Keywords

Biomass Clay Cellulose Steam Rubber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duchin, F., & Lange, G. (1994). The future of the environment: Ecological economics and technological change. New York: Oxford University Press.Google Scholar
  2. ECN. (1999). Markal-IO linking an input-output model with MARKAL. Petten, The Netherlands: Dutch National Program on Global Air Pollution and Climate Change.Google Scholar
  3. European Commission. (1995). The PRIMES project (EUR 16713 EN). Brussels/Luxembourg, Belgium: European Commission.Google Scholar
  4. Fahl, U., Remme, U., & Blesel, M. (2002). Szenarienerstellung für die Enquete-Kommision “Nachhaltige Energieversorgung des Deutschen Bundestages”. Berlin, Germany: Enquete Commission, Deutscher Bundestag.Google Scholar
  5. Fishbone, L. G., Giesen, G., Goldstein, G., Hymmen, H. A., Stocks, K. J., Vos, H., et al. (1983). User's guide for markal (bnl/kfa version 2.0). A multi-period, linear-programming model for energy systems analysis (No. BNL-51701), United States.Google Scholar
  6. Grundmann, T. (1999). Volkswirtschaftlich konsistente Energieszenarien zur CO 2 -Reduktion: Eine Sektoranalyse mittels Kopplung von einem energietechnischen mit einem makro ökonomischen Modell am Beispiel des IKARUS-Instrumentariums (JÜ L-3663), Jülich, Germany: Research Centre Jülich.Google Scholar
  7. Hake, J.-Fr. (1998). The German IKARUS analysis. Paper presented in Workshop of Forum für Energiemodelle und Energiewirtschaftliche Systemanalysen in Deutschland and ETSAP, Stuttgart, Germany.Google Scholar
  8. IEA/ETSAP. (1993). Linking technical energy systems models with marco-economic approaches. Oxford: Proceedings.Google Scholar
  9. James, D. E., del. Musgrove, A. R., & Stocks, K. J. (1986). Integration of an economic input-output model and a linear programming technological model for energy system analysis. Energy Economics, 8(2), 99–112.CrossRefGoogle Scholar
  10. Kraft, A., Markewitz, P., Nollen, A., & Vögele, S. (2002). IKARUS-MARKAL. In Forum f ür Energiemodelle und Energiewirtschaftliche Systemanalysen in Deutschland (Ed.), En-ergiemodelle zum Kernenergieausstieg in Deutschland, Series Umwelt und Ö konomie No. 34, Berlin, Germany: Physica-Verlag.Google Scholar
  11. Kuckshinrichs, W., & Kemfert, C. (1996). Macroeconomic simulation of energy policy in Germany: Effects of a CO2-tax system. In P. Alvfors, L. Eidensten, G. Svedberg, & J. Yan (Eds.), The proceedings of ECOS '96, international symposium on efficiency, cost, optimization, simulation and environmental aspects of energy systems, Stockholm, Sweden.Google Scholar
  12. Markewitz, P., & Stein, G. (2003). Das IKARUS-Projekt, in Energietechnische Perspektiven fü r Deutschland. Jülich, Germany: Research Centre Jülich.Google Scholar
  13. Markewitz, P., & Ziesing, H.-J. (2004). Politikszenarien für den Klimaschutz. Jülich, Germany: Research Centre Jülich.Google Scholar
  14. Markewitz, P., Kuckshinrichs, W., Martinsen, D., & Fr. Hake, J. (1996). IKARUS — A fundamental concept for national GHG-mitigation strategies. Energy Conversion Management, 37, 777–782.CrossRefGoogle Scholar
  15. McFarland, J. R., Reilly, J. M., & Herzog, H. J. (2004). Representing energy technologies in top-down economic models using bottom-up information. Energy Economics, 26, 687–707.CrossRefGoogle Scholar
  16. Messner, S., & Strubegger, M. (1995). User's guide for MESSAGE III (WP-95–69). Laxenburg, Austria: International Institute for Applied Systems Analysis.Google Scholar
  17. Pfaffenberger, W., & Ströbele, W. (1995). Makroökonomisches informations system Ikarus (Vol. 1). Oldenburg, Germany: Beschreibung des Modells MIS.Google Scholar
  18. Wilting, H. C., Faber, A., & Idenburg, A. M. (2004). Exploring technology scenarios with an input-output model. Paper presented at the International Conference of Input-Output and General Equilibrium: Data, Modeling and Policy Analysis, Brussels, Belgium.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stefan Vögele
    • 1
  • Wilhelm Kuckshinrichs
    • 1
  • Peter Markewitz
    • 1
  1. 1.Institute of Energy Research — Systems Analysis and Technology EvaluationForschungszentrum JuelichJuelichGermany

Personalised recommendations