Advertisement

Industrial Ecology in the Age of Input-Output Analysis

  • Reid Lifset
Part of the Eco-Efficiency in Industry and Science book series (ECOE, volume 23)

To some, industrial ecology is the field that seeks to understand and replicate the dense network of by-product exchanges found in the famous industrial district of Kalundborg, Denmark. To others, it is the attempt to look to natural systems for models for industrial design and practice. To still others, it is nearly any effort to mesh environmental concerns with production and consumption.

A handbook on input-output analysis needs more clarity than this, both to provide context for the individual chapters and to provide an introduction to those less familiar with industrial ecology. This opening chapter will provide such an introduction by first reviewing the goals, history, elements and state of development of the field. It will then examine six dimensions of industrial ecology in terms of their potential relationship to input-output analysis.

Keywords

Supply Chain Industrial Ecology Industrial Symbiosis Life Cycle Perspective Biological Analogy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaanse, A., Bringezu, S., Hammond, A., Moriguchi, Y., Rodenburg, E., Rogich, D. et al. (1997). Resource flows: The material basis of industrial economies. Washington, DC: World Resources Institute.Google Scholar
  2. Alcamo, J. G., Kreileman, J. J., Krol, M. S., & Zuidema, G. (1994). Modeling the global society? biosphere? climate systems part 1: Model description and testing. Water, Air and Soil Pollution, 76, 1–35.CrossRefGoogle Scholar
  3. Allenby, B. (1999). Industrial ecology: Policy framework and implementation. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  4. Allenby, B. R., & Cooper, J. (1994). Understanding industrial ecology from a biological systems perspective. Total Quality Environmental Management (Spring), 343–354.Google Scholar
  5. Andrews, C. J. (2000). Building a micro foundation for industrial ecology. Journal of Industrial Ecology, 4(3), 35–52.CrossRefGoogle Scholar
  6. Ausubel, J. H. (1996). Can technology spare the Earth?. American Scientist, 84(2), 166–178.Google Scholar
  7. Ausubel, J. H., & Langford, H. D. (1997). Technological trajectories and the human environment. Washington, DC: National Academy Press.Google Scholar
  8. Ayres, R. U., & Kneese, A. V. (1969). Production, consumption & externalities. American Economic Review, 59(3), 282–296.Google Scholar
  9. Ayres, R., & Rod, S. (1986). Patterns of Pollution in the Hudson-Raritan Basin. Environment, 28(4), 14–43.Google Scholar
  10. Ayres, R., Schlesinger, W. H., & Socolow, R. H. (1994). Human impacts on the carbon and nitrogen cycles. Printed in R. H. Socolow, C. Andrews, F. Berkhout, & V. Thomas (Eds.), Industrial ecology and global change. Cambridge: Cambridge University Press.Google Scholar
  11. Bailey, R., Allen, J. K., & Bras, B. (2004a). Applying ecological input-output flow analysis to material flows in industrial systems: Part I: Tracing flows. Journal of Industrial Ecology, 8(1–2), 45–68(24).CrossRefGoogle Scholar
  12. Bailey, R., Bras, B., & Allen, J. K. (2004b). Applying ecological input-output flow analysis to material flows in industrial systems: Part II: Flow metrics. Journal of Industrial Ecology, 8(1–2), 69–91(23).CrossRefGoogle Scholar
  13. Björklund, A., Bjuggren, C., Dalemo, M., & Sonesson, U. (1999). Planning biodegradable waste management in Stockholm. Journal of Industrial Ecology, 3(4), 43–58.CrossRefGoogle Scholar
  14. Bohe, R. A. (2003). Why we need a better understanding of ecology and environmental dynamics in industrial ecology (on-line letter). Journal of Industrial Ecology, 7(1).Google Scholar
  15. Boon, J. E., Isaacs, J. A., & Gupta, S. M. (2003). End-of-life infrastructure economics for “clean vehicles” in the United States. Journal of Industrial Ecology, 7(1), 25–45.CrossRefGoogle Scholar
  16. Bringezu, S., Schütz, H., & Moll, S. (2003). Rationale for and interpretation of economy-wide materials flow analysis and derived indicators. Journal of Industrial Ecology, 7(2), 43–64.CrossRefGoogle Scholar
  17. Carnahan, J. V., & Thurston, D. L. (1998). Trade-off modeling for product and manufacturing process design for the environment. Journal of Industrial Ecology, 2(1), 79–93.CrossRefGoogle Scholar
  18. Chertow, M. (2000). The IPAT equation and its variants: Changing views of technology and environmental impact. Journal of Industrial Ecology, 4(4), 13–30.CrossRefGoogle Scholar
  19. Cleveland, C. J., & Ruth, M. (1998). Indicators of dematerialization and the materials intensity of use. Journal of Industrial Ecology, 2(3), 15–50.CrossRefGoogle Scholar
  20. Clift, R., Birmingham, K., & Lofsted, R. (1995). Environmental perspectives and environmental assessment. Printed in Guerrier (Ed.), Values and the environment: A social science perspective. New York: Wiley.Google Scholar
  21. Daniels, P. L., & Moore, S. (2001). Approaches for quantifying the metabolism of physical economies part I: Methodological overview. Journal of Industrial Ecology, 5(4), 69–93.CrossRefGoogle Scholar
  22. DeSimone, L. D., Popoff, F., & WBCSD (1997). Eco-efficiency: The business link to sustainable development. Cambridge, MA: MIT Press.Google Scholar
  23. Diwekar, U., & Small, M. J. (1998). Industrial ecology and process optimization. Journal of Industrial Ecology, 2(3), 11–14.CrossRefGoogle Scholar
  24. Duchin, F. (1992). Industrial input-output analysis: Implications for industrial ecology. PNAS, 89(3), 851–855.CrossRefGoogle Scholar
  25. Duchin, F. (1994a). The future of the environment: Ecological economics and technological change. New York: Oxford University Press.Google Scholar
  26. Duchin, F. (1994b). Input-output analysis and industrial ecology. Printed in B. R. Allenby, & D. J. Richard (Eds.), The greening of industrial ecosystems (pp. 61–68). Washington, DC: National Academy Press.Google Scholar
  27. Duchin, F. (1998). Structural economics: Measuring change in technology, lifestyes, and the environment. Washington, DC: Island Press.Google Scholar
  28. Duchin, F. (2004). Input-output economics and material flows. Troy, NY: Rensselaer Polytechnic Institute.Google Scholar
  29. Duchin, F., & Szald, D. (1985). A dynamic input-output model with assured positive output. Metroeconomica, 37, 269–282.Google Scholar
  30. Ehrenfeld, J. (2000). Industrial ecology: Paradigm shift or normal science?. American Behavioral Scientist, 44(2), 229–244.Google Scholar
  31. Ehrenfeld, J. R. (2004). Can industrial ecology be the “science of sustainability”?. Journal of Industrial Ecology, 8(1–2), 1–3(3).CrossRefGoogle Scholar
  32. Ehrenfield, J. R., & Gertler, N. (1997). Industrial ecology in practice: The evolution of interdependence at Kalundborg. Journal of Industrial Ecology, 1(1), 67–79.CrossRefGoogle Scholar
  33. Erkman, S. (1997). Industrial ecology: An historical view. Journal of Cleaner Production, 5(1–2), 1–10.CrossRefGoogle Scholar
  34. Farla, J. C. M., & Blok, K. (2000). Energy efficiency and structural change in the Netherlands, 1980–1995: Influence of energy efficiency, dematerialization, and economic structure on national energy consumption. Journal of Industrial Ecology, 4(1), 93–118.CrossRefGoogle Scholar
  35. Fischer-Kowalski, M. (1998). Society's metabolism: The intellectual history of materials flow analysis, part I: 1860–1970. Journal of Industrial Ecology, 2(1), 61–78.CrossRefGoogle Scholar
  36. Fischer-Kowalski, M., & Hüttler, W. (1998). Society's metabolism: The intellectual history of materials flow analysis, part II: 1970–1998u Journal of Industrial Ecology, 2(4), 107–135.CrossRefGoogle Scholar
  37. Frosch, R., & Gallopoulos, N. (1989). Strategies for manufacturing. Scientific American, 261(3), 94–102.CrossRefGoogle Scholar
  38. Fussler, C., & James, P. (1996). Driving eco-innovation: A breakthrough discipline for innovation and sustainability. London/Washington, DC: Pitman.Google Scholar
  39. Graedel, T. E. (2000). The evolution of industrial ecology. Environmental Science & Technology, 34(1), 28A–31A.CrossRefGoogle Scholar
  40. Graedel, T. E., & Allenby, B. R. (1995). Industrial ecology (2nd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  41. Graedel, T. E., & Allenby, B. R. (1998). Industrial ecology and the automobile. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  42. Graedel, T. E., & Allenby, B. R. (2003). Industrial ecology (2nd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  43. Grübler, A. (1998). Technology and global change. New York: Cambridge University Press.Google Scholar
  44. Guide, D. V., & van Wassenhove, L. N. (2004). Special issue: Supply chain management. California Management Review, 46(2).Google Scholar
  45. Guile, B., & Cohon, J. (1997). Sorting out a service-based economy. Printed in M. R. Chertow & D. C. Esty (Eds.), Thinking ecologicallly: The next generation of environmental policy. New Haven, CT: Yale University Press.Google Scholar
  46. Guinee, J. B. (2002). Handbook on life cycle assessment: Operational guide to the ISO standards. Dordrecht, The Netherlands: Kluwer.Google Scholar
  47. Hansen, E., & Lassen, C. (2002). Experience with the use of substance flow analysis in Denmark. Journal of Industrial Ecology, 6(3), 201–219.CrossRefGoogle Scholar
  48. Hertwich, E. (2005). Consumption and industrial ecology. Journal of Industrial Ecology, 9(1–2).Google Scholar
  49. Hoffren, J., Luukkanen, J., & Kaivo-oja, J. (2000). Decomposition analysis of Finnish material flows: 1960∙996. Journal of Industrial Ecology, 4(4), 105–126.CrossRefGoogle Scholar
  50. Huesemann, M. (2003). Recognizing the limits of environmental science and technology. Environmental Science and Technology, 37(13), 259A–261A.CrossRefGoogle Scholar
  51. Jackson, T. (1999). Integrated product policy, a report for the European Commission DGXI, and Product Policy in Europe by Frans Oosterhuis, Freider Rubik, and Gerd Scholl. Journal of Industrial Ecology, 3(2–3), 181–182.CrossRefGoogle Scholar
  52. Jelinski, L., Graedel, T., Laudise, R., McCall, D., & Patel, C. (1992). Industrial ecology: Concepts and approaches. PNAS, 89, 793–797.CrossRefGoogle Scholar
  53. Joshi, S. (1999). Product environmental life-cycle assessment using input-output techniques. Journal of Industrial Ecology, 3(2–3), 95–120.CrossRefGoogle Scholar
  54. Kay, J. (2002). On complexity theory, exergy, and industrial ecology. Printed in C. J. Kibert, J. Sendzimir, & G. B. Guy (Eds.), Construction ecology: Nature as the basis for green buildings. London/New York: Spon.Google Scholar
  55. Keoleian, G. A., Kar, K., Manion, M. M., & Bulkley, J. W. (1997). Industrial ecology of the automobile: A life cycle perspective. Warrendale, PA: Society of Automotive Engineers (SAE).Google Scholar
  56. Kneese, A. V., Ayres, R. U, & D'Arge, R. C. (1970). Economics and the environment: A materials balance approach. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  57. Konijn, P., de Boer, S., & van Dalen, J. (1997). Input-output analysis of material flows with application to iron, steel and zinc, Structural Change and Economic Dynamics, 8(1), 129–153.CrossRefGoogle Scholar
  58. Laudise, R. A., & Taylor-Smith, R. E. (1998). Lucent industrial ecology faculty fellowship program: Accomplishments, lessons, and prospects. Journal of Industrial Ecology, 2(4), 15–28.CrossRefGoogle Scholar
  59. Lave, L. B., Cobras-Flores, E., Hendrikson, C, & McMichael, F. (1995). Using input-output analysis to estimate economy wide discharges. Environmental Science & Technology, 29(9), 420–426.CrossRefGoogle Scholar
  60. Lenzen, M. (2000). Errors in conventional and input-output-based life-cycle inventories. Journal of Industrial Ecology, 4(4), 127–148.CrossRefGoogle Scholar
  61. Leontief, W. (1936). Quantitative input-output analysis in the economic system of the United States. Review of Economics and Statistics, 18(3), 105–125.CrossRefGoogle Scholar
  62. Leontief, W. (1970a). The dynamic inverse. Printed in A. Carter & A. Brody (Eds.), Contributions to input-output analysis (pp. 17–46). Amsterdam: North-Holland.Google Scholar
  63. Leontief, W. (1970b). Environmental repercussions and the economic structure: An inputoutput approach. Review of Economics and Statistics, 52(3), 262–271.CrossRefGoogle Scholar
  64. Lifset, R. (1993). Take it back: Extended producer responsibility as a form of incentive-based policy. Journal of Resource Management and Technology, 21(4), 163–175.Google Scholar
  65. Lifset, R. (1998). Taking stock and improving flow. Journal of Industrial Ecology, 2(1), 1–2.CrossRefGoogle Scholar
  66. Lifset, R. (2004). Probing metabolism. Journal of Industrial Ecology, 8(3), 1–3.CrossRefGoogle Scholar
  67. Lifset, R., & Graedel, T. E. (2002). Industrial ecology: Goals and definitions. Printed in R. Ayres & L. Ayres (Eds.), Handbook of industrial ecology (pp. 3–15). Cheltenham: Edward Elgar.Google Scholar
  68. Lin, X., & Polenske, K. R. (1998). Input — output modeling of production processes for business management. Structural Change and Economic Dynamics, 9(2), 205–226.CrossRefGoogle Scholar
  69. Lloyd, S. M., & Lave, L. B. (2003). Life cycle economic and environmental implications of using nano-composites in automobiles. Environmental Science & Technology, 37(15), 3458–3466.CrossRefGoogle Scholar
  70. Marstrander, R., Brattebø, H., Røine, K., & Støren, S. (1999). Teaching industrial ecology to graduate students: Experiences at the Norwegian University of Science and Technology. Journal of Industrial Ecology, 3(4), 117–130.CrossRefGoogle Scholar
  71. Matthews, H. S., & Hendrickson, C. T. (2002). The economic and environmental implications of centralized stock keeping. Journal of Industrial Ecology, 6(2), 71–81.CrossRefGoogle Scholar
  72. Matthews, H. S., & Small, M. J. (2000). Extending the boundaries of life-cycle assessment through environmental economic input-output models. Journal of Industrial Ecology, 4(3), 7–10.CrossRefGoogle Scholar
  73. Moriguchi, Y., Hondo, Y., & Shimizu, H. (1993). Analyzing the life cycle impact of cars: The case of CO2. Industrial and Environment, 16(1–2), 42–45.Google Scholar
  74. Nakamura, S., & Kondo, Y. (2002). Input-output analysis of waste management. Journal of Industrial Ecology, 6(1), 39–64.CrossRefGoogle Scholar
  75. Nakicenovic, N. (Ed.) (1997). Freeing energy from carbon. In technological trajectories and the human environment (Summer 1996 issue of Daedalus, Ed.). Washington, DC: National Academy Press.Google Scholar
  76. Nash, J., & Ehrenfeld, J. (1997). Codes of environmental management practice. Annual Review of Energy and the Environment, 22, 487–535.CrossRefGoogle Scholar
  77. New York Academy of Sciences (2002). Harbor project: Industrial ecology, pollution prevention and the New York/New Jersey Harbor. Retrieved July 25, 2002, from http://www.nyas. org/policy/harbor/highlights.html
  78. Norberg-Bohm, V. (2000). Innovation effects of environmental policy instruments. Vols. 5 and 6, by Paul Klemmer, Ulrike Lehr, and Klaus Lobbe, Policies for cleaner technology: A new agenda for government and industry, by Anthony Clayton, Graham Spinardia, and Robin Williams and Adoption of environmental innovations: The dynamics of innovation as interplay between business competence, environmental orientation and network involvement, by Koos Van Dijken. Journal of Industrial Ecology, 4(3), 123–126.Google Scholar
  79. OECD (1998). Eco-efficiency. Paris: Organisation for economic cooperation and development. Paris: OECD.Google Scholar
  80. Organisation for Economic Cooperation and Development (OECD) (1996). Extended producer responsibility in the OECD area (No. OCDE/GD(96)48). Paris: OECD.Google Scholar
  81. Preston, J. (1997). Technology innovation and environmental progress. Printed in M. Chertow & D. Esty (Eds.), Thinking ecologically, the next generation of environmental policy. New Haven, CT: Yale University Press.Google Scholar
  82. Raynolds, M., Fraser, R., & Checkel, D. (2000). The relative mass-energy-economic (RMEE) method for system boundary selection, Part I. International Journal of Life-Cycle Assessment, 5(1), 37–46.CrossRefGoogle Scholar
  83. Reijnders, L. (1998). The factor ‘X’ debate: Setting targets for eco-efficiency. Journal of Industrial Ecology, 2(1), 13–22.CrossRefGoogle Scholar
  84. Reiskin, E. D., White, A. L., Johnson, J. K., & Votta, T. J. (1999). Servicizing the chemical supply chain. Journal of Industrial Ecology, 3(2–3), 19–31.CrossRefGoogle Scholar
  85. Rosen, C. M., Bercovitz, J., & Beckman, S. (2000). Environmental supply-chain management in the computer industry: A transaction cost economics perspective. Journal of Industrial Ecology, 4(4), 83–104.CrossRefGoogle Scholar
  86. Rosen, C. M., Beckman, S. L., & Bercovitz, J. (2002). The role of voluntary industry standards in environmental supply-chain management: An institutional economics perspective. Journal of Industrial Ecology, 6(3), 103–123.CrossRefGoogle Scholar
  87. Roundtable on the industrial ecology of pulp and paper (1997). Journal of Industrial Ecology, 1(3), 87–114.Google Scholar
  88. Ruth, M. (1996). Evolutionary economics at the crossroads of biology and physics. Journal of Social & Evolutionary Systems, 19(2), 125.CrossRefGoogle Scholar
  89. Ruth, M., & Harrington, T. Jr. (1997). Dynamics of material and energy use in U.S. pulp and paper manufacturing. Journal of Industrial Ecology, 1(3), 147–168.CrossRefGoogle Scholar
  90. Schmidheiny, S. (1992). Changing course: A global business perspective on development and the environment. Cambridge, MA: MIT Press.Google Scholar
  91. Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M. et al. (2003). Energy and environmental aspects of using corn stover for fuel ethanol. Journal of Industrial Ecology, 7 (3–4), 117–146(130).CrossRefGoogle Scholar
  92. Socolow, R. H. (1994). Six perspectives on industrial ecology. Printed in R. H. Socolow, C. Andrews, F. Berkhout & V. Thomas (Eds.), Industrial ecology and global change. Cambridge: Cambridge University Press.Google Scholar
  93. Socolow, R. H. (1999). Nitrogen management and the future of food: Lessons from the management of energy and carbon. PNAS, 96(11), 6001–6008.CrossRefGoogle Scholar
  94. Socolow, R. H., Andrews, C., Berkhout, F., & Thomas, V. (1994). Industrial ecology and global change. Cambridge (UK)/New York: Cambridge University Press.Google Scholar
  95. Stigliani, W., Jaffe, P., & Anderberg, S. (1993). Heavy metal pollution in the Rhine Basin. Environmental Science & Technology, 27(5), 786.CrossRefGoogle Scholar
  96. Suh, S. (2005). Theory of materials and energy flow analysis in ecology and economics. Ecological Modelling, 189, 251–269.CrossRefGoogle Scholar
  97. Suh, S., & Huppes, G. (2005). Methods for life cycle inventory of a product. Journal of Cleaner Production, 13(7), 687–697.CrossRefGoogle Scholar
  98. Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G. et al. (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environmental Science & Technology, 38(3), 657–664.CrossRefGoogle Scholar
  99. Tibbs, H. (1992). Industrial ecology: An environmental agenda for industry. Whole earth review, Winter, 4.Google Scholar
  100. Tukker, A., Kleijn, R., Van Oers, L., & Smeets, E. R. W. (1997). Combining SFA and LCA: The Swedish PVC analysis. Journal of Industrial Ecology, 1(4), 93–116.CrossRefGoogle Scholar
  101. Van der Voet, E., Guinée, J., & Udo de Haes, H. A. (2000). Heavy metals: A problem solved? Methods and models to evaluate policy strategies for heavy metals. Dordrecht, The Netherlands: Kluwer.Google Scholar
  102. van der Voet, E., van Oers, L., & Nikolic, I. (2005). Dematerialization: Not just a matter of weight. Journal of Industrial Ecology, 8(4).Google Scholar
  103. von Weizsäcker, E., Lovins, A. B., & Lovins, L. H. (1997). Factor four: Doubling wealth, halving resource use. London: Earthscan.Google Scholar
  104. Wells, P., & Orsato, R. (2005). Redesigning the industrial ecology of the automobile. Journal of Industrial Ecology, 9(3).Google Scholar
  105. Wernick, I. K., & Ausubel, J. H. (1997). Research needs for industrial ecology: Lawrence Liver-more National Laboratory for the U.S. Department of Energy.Google Scholar
  106. Wernick, I. K., Waggoner, P. E., & Ausubel, J. H. (1997). Searching for leverage to conserve forests: The industrial ecology of wood products in the United States. Journal of Industrial Ecology, 1(3), 125–145.CrossRefGoogle Scholar
  107. White, P. (2003). Design + environment: A global guide to designing greener goods by Helen Lewis and John Gertsakis, with Tim Grant, Nicolla Morelli and Andrew Sweatman; How to do ecodesign? A guide to environmentally and socially sound design, edited by the German Federal Environmental Agency, Ursula Tischner, Eva Schmincke, Frieder Rubik, Martin Prõsler, in collaboration with Bernhard Deitz, Sandra Maßelter and Bernd Hirschl; Ecodesign PILOT: Product investigation, learning and optimization tool for sustainable product development, by Wolfgang Wimmer and Rainer Züst. Journal of Industrial Ecology, 7(1), 139–142.Google Scholar
  108. White, R. (1994). Preface. Printed in B. R. Allenby & D. Richards (Eds.), The greening of industrial ecosystems. Washington, DC: National Academy Press.Google Scholar
  109. Wrisberg, N., & Clift, R. (1999). Industrial ecology in Europe: The CHAINET concerted action. Journal of Industrial Ecology, 3(4), 8–9.CrossRefGoogle Scholar
  110. York, R., Rosa, E., & Dietz, T. (2005). The ecological footprint intensity of national economies. Journal of Industrial Ecology, 8(4).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Reid Lifset
    • 1
  1. 1.Journal of Industrial Ecology at the School of Forestry & Environmental StudiesYale UniversityNew HavenUSA

Personalised recommendations