Diversity of anurans across agricultural ponds in Argentina

  • Paola M. Peltzer
  • Rafael C. Lajmanovich
  • Andres M. Attademo
  • Adolfo H. Beltzer
Part of the Topics in Biodiversity and Conservation book series (TOBC, volume 4)


We examined the anuran diversity of 31 ponds (30 located on the border of soybean cropland and one within a protected forest) in mid-western Entre Ríos Province (Argentina). Moreover, each species found was characterised with respect to its vertical location. Using principal component (PCA) and canonical correspondence analyses (CCA) we quantified associations between species diversity and habitat and spatial variables. A total of 21 anuran species belonging to four families (Microhylidae, Bufonidae, Leptodactylidae and Hylidae) were detected in ponds surrounded by soybean croplands. PCA generated three principal components, which together explained variation in anuran diversity across the agricultural ponds and control site. Negative values of PC-1 described the smaller ponds with narrower hedgerow and monospecific shore vegetation. PC-2 had high loading on pond depth, and PC-3 had negative loading on air temperature. CCA showed a very strong association between the two data sets. We found all guilds related with pond area. Indeed, we found that arboreal species were recorded in large ponds with higher values of shore vegetation index and presence of wider hedgerow. Moreover, a higher number of terrestrial species was found to relate to large pond areas and greater shore vegetation diversity. Finally, aquatic species were related to pond area, shore vegetation index and depth. Anuran diversity across agricultural ponds of mid-western Entre Ríos Province can be affected by local habitat factors such as reduction in pond size and depth, shore vegetation richness, width of hedgerow and air temperatures. Management of anurans to reverse recent declines will require defining high-quality habitat for individual species or group of species, followed by efforts to retain or restore these aquatic habitat. The maintenance of shore vegetation of ponds and hedgerows may increases the number of species and diversity of anurans within agricultural landscapes.

Key words

Agroecosystem Anura Argentina Conservation Soybean cropland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altieri M.A. Biodiversity and Pest Management in Agroecosystems Haworth Press, New York.Google Scholar
  2. ASIH, HL and SSAR. 2001. Guidelines for use of live amphibians and reptiles in field research. http: // Accessed on 13/06/02.Google Scholar
  3. Bishop C.A., Mahony N.A., Struger J., Ng P. and Pettit K.E. 1999. Anuran development, density and diversity in relation to agricultural activities in the Holland River watershed, Ontario, Canada (1990–1992). Environ. Monitor. Assess. 57: 21–43.CrossRefGoogle Scholar
  4. Bishop C.A. and Pettit K.E. (eds), 1992. Declines in Canadian Amphibian Populations: Design a National Monitoring Strategy. Can. Wildl. Serv. Occas. Paper 76, Environment Canada Ottawa.Google Scholar
  5. Bonin J., DesGranges J.L., Rodriguez J. and Ouellet M. 1997. Anuran species richness in agricultural landscape of Quebec: foreseeing longterm results of road call surveys. In: Green D.M. (ed.), Amphibian in Decline: Canadian Studies of a Global Problem. Society for the Study of Amphibian and Reptiles, St. Louis, Missouri, pp. 141–149.Google Scholar
  6. Bosch J., Boyero L. and Martínez-Solano I. 2004. Spatial scales for the management of amphibian populations. Biodiv. Conserv. 13: 409–420.CrossRefGoogle Scholar
  7. Bridges C.M. 1999. Effects of a pesticide on tadpole activity and predator avoidance behaviour. J. Herpetol. 33: 303–306.CrossRefGoogle Scholar
  8. Campana M.A., Panzeri A.M., Moreno V.J. and Dulout F.N. 2003. Micronuclei induction in Rana catesbeiana tadpoles by the pyrethroid insecticide lambda-cyhalothrin. Genet. Mol. Biol. 26: 99–103.CrossRefGoogle Scholar
  9. Coneza Fernandez Vitora V. 1997. Guía Metodológica para la Evaluación del Impacto Ambiental. Mundi Prensa, Madrid.Google Scholar
  10. Cook W.M., Lane K.T., Fester B.L. and Holt R.D. 2002. Island Theory, matrix effects and species richness pattern in habitat fragments. Ecol. Lett. 5: 619–623.CrossRefGoogle Scholar
  11. Crump M.L. and Scott N.J. 1994. Visual encounter surveys. In: Heyer W.R., Donelly M.A., McDiarmid R.W., Hayek L.C. and Foster M.S. (eds), Measuring and Monitoring Biological Diversity, Standard Methods for Amphibians. Smithsonian Institution Press, Washington, DC, pp. 84–91.Google Scholar
  12. Dalrymple G.H. 1988. The herpetofauna of Long Pine Key, Everglades National Park, in relation to vegetation and hydrology. In: Szaro R., Severson K.E. and Patton D.R. (eds), Management of Amphibians, Reptiles, and Small Mammals in North America”. U.S.D.A.Forest Service. General Technical Report RM-166, Fort Collins, pp. 72–86.Google Scholar
  13. Gascon C., Lovejoy T.E., Bierregrad Jr. R.O., Malcolm J.R., Stouffer P.C., Vasconcelos H.L., Laurance W.F., Zimmerman B., Tocher M. and Borges M. 1999. Matrix habitat and species richness in tropical forest remnants. Biol. Conserv. 91: 223–229.CrossRefGoogle Scholar
  14. Gotelli N.J. and Entsminger G.L. 2001. EcoSim: Null Models Software for Ecology Version 70. Acquired Intelligence Inc. and Kesey-Bear. Accessed on 13/06/03.Google Scholar
  15. Gotelli N.J. and McCabe D.J. 2002. Species co-occurrences: a metaanalysis of J.M. Diamond’s assembly rule model. Ecology 83: 2091–2096.CrossRefGoogle Scholar
  16. Gustafson E.J. 1998. Quantifying landscape spatial pattern: What is the state of the art?. Ecosystems 1: 143–156.CrossRefGoogle Scholar
  17. Hair J.F., Anderson R.E., Tatham R.L. and Grablowsky B.L. 1979. Multivariate Data Analysis. Petrolium Publishing Co., Tulsa, Oklahoma.Google Scholar
  18. Hazell D., Cunnungham R., Lindenmayer D., Mackey B., and Osborne W. 2001. Use of farm dams as frog habitat in an Autralian agricultural landscape: factors affecting species richness and distribution. Biol. Conserv. 102: 155–169.CrossRefGoogle Scholar
  19. Hecnar S.J. and M’Closkey R.T. 1997. Patterns of nestedness and species association in a pond dwelling amphibian fauna. Oikos 80: 371–381.CrossRefGoogle Scholar
  20. Huston M.A. 1995. Biological Diversity: the Coexistence of Species on Changing. Cambridge University Press, Cambridge.Google Scholar
  21. Hutcheson K. 1970. A test for comparing diversities based on the Shannon formula. J. Theo. Biol. 29: 151–154.CrossRefGoogle Scholar
  22. Jansen D. 1986. The eternal external threat. In: Soule M.E. (ed.), Conservation Biology. The Science of Scarcity and Diversity, Sinauer Associates Inc., Sunderland, MA, pp. 286–302.Google Scholar
  23. Knutson M., Richardson W., Reineke D.M., Gray B.R., Parmelee J.R. and Weick S.E. 2004. Agricultural ponds support amphibian population. Ecol. Appl. 14(3): 669–684.CrossRefGoogle Scholar
  24. Knutson M., Sauer J.R., Olsen D.A., Mossman M.J., Hemesath L.M. and Lannoo M.J. 1999. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA. Conserv. Biol. 13: 1437–1446.CrossRefGoogle Scholar
  25. Kovach W.L. 1999. MVSP — Multivariate Statistical Package for IBM-PC, version 3.0.Google Scholar
  26. Lajmanovich R.C., Lorenzatti E., de la Sierra P., Marino F. and Peltzer P.M. 2002. First registrations of organochlorines pesticides residues amphibians of the Mesopotamic Region, Argentina. Froglog 54: 4.Google Scholar
  27. Lajmanovich R.C. and Peltzer P.M. 2001. Evaluación de la diversidad de anfibios de un remanente forestal del valle aluvial del río Paraná (Entre Ríos-Argentina). Boletín de la Asociación Herpetológica Española 12: 12–17.Google Scholar
  28. Lajmanovich R.C., Sandoval M.T. and Peltzer P.M. 2003. Induction of mortality and malformation in Scinax nasicus tadpoles exposed by glyphosate formulations. Bull. Environ. Contam. Toxicol. 70: 612–618.PubMedCrossRefGoogle Scholar
  29. Lawton J.H., Bignell D.E., Bolton B., Bloemers G.F., Eggleton P., Hammond P.M., Hodda M., Holt R.D., Larsen T.B., Mawdsleu N.A., Stork N.E., Srivasta D.S. and Watt A.T. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391: 72–76.CrossRefGoogle Scholar
  30. Lips K.R. 1998. Decline of a tropical montane amphibian fauna. Conserv. Biol. 12: 106–117.CrossRefGoogle Scholar
  31. MacArthur R.H. and Wilson E.O. 1967. The Theory of Island Biogeography. Princenton University Press, New Jersey.Google Scholar
  32. Magurran A.E. 1987. Ecological Diversity and its Measurements. Princeton University Press, Princeton, NJ.Google Scholar
  33. Maisonneuve C. and Rioux S. 2001. Importance of riparian habitats for small mammal and herpetofaunal communities in agricultural landscapes of southern Québec. Agricult. Ecosyst. Environ. 83: 165–175.CrossRefGoogle Scholar
  34. Manly B.F. 1991. Multivariate Statistical Methods. A Primer. Chapman and Hall, New Zeland.Google Scholar
  35. Mann R.M., Bidwell J.R. and Tyler M.J. 2003. Toxicity of herbicide formulations to frogs and the implications for product registration: A case study from Western Australia. Appl. Herpetol. 1: 13–22.CrossRefGoogle Scholar
  36. Marshall E.J. and Moonen A.C. 2002. Field borders in northern Europe: their functions and interactions with agriculture. Agricult. Ecosyst. Environ. 89: 5–21.CrossRefGoogle Scholar
  37. Matlack G.R. 1997. Lan use and forest habitat distribution in the hinterland of a large city. J. Biogeogr. 24: 297–307.CrossRefGoogle Scholar
  38. Peltzer P.M. and Lajmanovich R.C. 2001. Habitat fragmentation and amphibian species richness in riparian areas of the Parana River, Argentina. Froglog 46: 5.Google Scholar
  39. Peltzer P.M., Lajmanovich R.C. and Beltzer A.H. 2003. The effects of habitat fragmentation on amphibian species richness in the floodplain of the middle Paraná River. Herpetol. J. 13: 95–98.Google Scholar
  40. Petit L.J. and Petit D.R. 2003. Evaluating the importance of human-modified lands for Neotropical bird conservation. Conserv. Biol. 17: 687–694.CrossRefGoogle Scholar
  41. Ricketts T.H., Daily G.C. and Ehrlich P.R. 2001. Countryside biogeography of moths in a fragmented landscape: biodiversity in native and agricultural habitats. Conserv. Biol. 15: 378–388.CrossRefGoogle Scholar
  42. Risser P.G. 1995. Biodiversity and ecosystem function. Conserv. Biol. 9: 742–746.CrossRefGoogle Scholar
  43. Shannon C.E. and Weaver W. 1949. The Mathematical Theory of Communications. University of Illinois Press, Urbana.Google Scholar
  44. Sneath P.H. and Sokal R.R. 1973. Numerical Taxonomy. W. H. Freeman & Co, San Francisco.Google Scholar
  45. Stone L. and Roberts A. 1990. The checkerboard score and species distributions. Oecologia 85: 74–79.CrossRefGoogle Scholar
  46. Storfer A. 2003. Amphibian declines: future directions. Diver. Distrib. 9: 151–163.CrossRefGoogle Scholar
  47. Stumpel A.H. and van der Voet H. 1998. Characterizing the suitable of new ponds for amphibians. Amphibia-Reptilia 19: 125–142.CrossRefGoogle Scholar
  48. SYSTAT. 1998. Standard Version, Version 9. SPSS Inc., Chicago, IL.Google Scholar
  49. Szaro R.C. 1986. Guild management: an evaluation of avian guilds as a predictive tool. Environ. Manage. 10: 681–688.CrossRefGoogle Scholar
  50. Thomas G.M. 2000. BIO-DAP. A Biodiversity Analysis Package. Accessed on 28/6/03.Google Scholar
  51. Turner M.G., Arthaud G.J., Engstrom R.T., Hejl S.J., Liu J., Loeb S. and McKelvey K. 1995. Usefulness of spatially explicit population models in lands management. Ecol. Appl. 5: 12–16.CrossRefGoogle Scholar
  52. Vallan D. 2000. Influence of forest fragmentation on amphibian diversity in the nature reserve of Ambohitantely, highland Madagascar. Biol. Conserv. 96: 31–43.CrossRefGoogle Scholar
  53. Wilson J.B. 1989. A null model of guild proportionality, applied to stratification of a New Zealand temperate rain forest. Oecologia 80: 263–267.Google Scholar
  54. Zar J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall Inc., Englewood Cliffs, NJ.Google Scholar
  55. Zimmerman B.L. 1994. Audio strip transects. In: Heyer W.R., Donelly M.A., McDiarmid R.W., Hayek L.C., Foster M.S. (eds), Measuring and Monitoring Biological Diversity, Standard Methods for Amphibians. Smithsonian Institution Press, Washington, DC, pp. 92–97.Google Scholar
  56. Zimmerman B. and Bierregaard R.O. 1986. Relevance of the equilibrium theory of island biogeography and species-area relations to conservation with a case from Amazonia. J. Biogeogr. 13: 133–143.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Paola M. Peltzer
    • 1
  • Rafael C. Lajmanovich
    • 1
  • Andres M. Attademo
    • 1
  • Adolfo H. Beltzer
    • 1
  1. 1.Instituto Nacional de Limnología (INALI-CONICET)Santo Tomé, Santa FeArgentina

Personalised recommendations