Skip to main content

X-RAY ABSORPTION SPECTROSCOPY IN BIOLOGY AND CHEMISTRY

  • Conference paper
Brilliant Light in Life and Material Sciences

Part of the book series: NATO Security through Science Series ((NASTB))

Abstract

X-ray absorption spectroscopy has widespread applications to biology and chemistry. Here we review the principles of the technique and discuss some chemical and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. I. Iwasaka, (Ed.) X-ray Absorption Fine Structure for Catalysts and Surfaces, World Scientific Press, Singapore (1996).

    Google Scholar 

  2. D. C. Koningsberger and R. Prins (Eds.) X-ray Absorption. Principals, Applications, Techniques of EXAFS, SEXAFS, and XANES, John Wiley and Sons (1988).

    Google Scholar 

  3. E. I. Stiefel and G. N. George, in Ferredoxins, Hydrogenases and Nitrogenases: Metal-Sulfide Proteins in Bioinorganic Chemistry (Eds. I. Bertini, H. B. Gray, S. J. Lippard, and J. Valentine) University Science Books (1994), Mill Valley, California pp 365–453.

    Google Scholar 

  4. J. Stöhr, NEXAFS Spectroscopy, Springer-Verlag (1992).

    Google Scholar 

  5. I. J. Pickering, R. C. Prince, D. E. Salt, and G. N. George, Quantitative, chemically specific imaging of selenium transformation in plants. Proc. Natl. Acad. Sci. USA. 97(20), 10717–10722 (2000).

    Article  ADS  Google Scholar 

  6. C. L. Spiro, J. Wong, F. W. Lytle, R. B. Greegor, D. H. Maylotte, and S. H. Lamson, X-ray absorption spectroscopic investigation of sulfur sites in coal: organic sulfur identification. Science, 226(4670), 48–50 (1984).

    Article  ADS  Google Scholar 

  7. G. N. George and M. L. Gorbaty, Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds. J. Am. Chem. Soc. 111(9), 3182–3186 (1989).

    Article  Google Scholar 

  8. G. N. George, M. L. Gorbaty, S. R. Kelemen and M. Sansone. Direct determination and quantification of sulfur forms in coals from the Argonne premium sample program. Energy & Fuels 5(1), 93–97 (1991).

    Article  Google Scholar 

  9. G. N. George and M. Sansone, unpublished observations.

    Google Scholar 

  10. I. J. Pickering, G. E. Brown Jr., and T. K. Tokunaga. Quantitative speciation of selenium in soils using X-ray absorption spectroscopy. Environ. Sci. Technol., 29(9), 2456–2459 (1995).

    Article  Google Scholar 

  11. J. G. Catalano, J. P. McKinley, J. M. Zachara, S. M. Heald, S. C. Smith, and G. E. Brown Jr. Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ. Sci. Technol. 40(8), 2517–2524 (2006).

    Article  Google Scholar 

  12. V. B. Vickerman, J. T. Trumble, G. N. George, I. J. Pickering, and H. Nichol, Selenium biotransformations in an insect ecosystem: effects of insects on phytoremediation. Environ. Sci. Technol. 38(13), 3581–3586 (2004).

    Article  Google Scholar 

  13. H.-M. Christen, K. S. Harshavardhan, M. F. Chisholm, E. D. Specht, J. D. Budai, D. P. Norton, L. A. Boatner and I. J. Pickering, The effect of size, strain, and long-range interactions on ferroelectric phase transitions in KTaO3/KNbO3 superlattices studied by X-ray, EXAFS, and dielectric measurements. Electroceramics, 4(2/3), 279–287 (2000).

    Article  Google Scholar 

  14. T. Funk, A. Deb, S. J. George, H. Wang and S. P. Cramer, X-ray magnetic circular dichroism–a high energy probe of magnetic properties. Coord. Chem. Rev. 249(1–2), 3–30 (2005).

    Article  Google Scholar 

  15. G. Schötz, R. Frahm, P. Mautner, R. Wienke, W. Wagner, W. Wilhelm, and P. Kienle, Spin-dependent extended x-ray-absorption fine structure: Probing magnetic short-range order. Phys. Rev. Lett. 62(22–29), 2620–2623 (1989).

    Article  ADS  Google Scholar 

  16. P. Glatzel and U. Bergmann, High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes–electronic and structural information. Coord. Chem. Rev. 249(1–2), 65–95 (2005).

    Article  Google Scholar 

  17. I. J. Pickering, M. Sansone, J. Marsch and G. N. George, Diffraction anomalous fine structure: a new technique for probing local atomic environment. J. Am. Chem. Soc. 115, 6302–6311 (1993).

    Article  Google Scholar 

  18. C. E. Laplaza, and C. C. Cummins. Dinitrogen cleavage by a three-coordinate molybdenum(III) complex. Science, 268(5212), 861–863 (1995).

    Article  ADS  Google Scholar 

  19. C. E. Laplaza, M. J. A. Johnson, J. C. Peters, A. L. Odom, E. Kim, C. C. Cummins, G. N. George, and I. J. Pickering, Dinitrogen cleavage by three-coordinate molybdenum(III) complexes: mechanistic and structural data. J. Am. Chem. Soc., 118(36), 8623–8638 (1996).

    Article  Google Scholar 

  20. R. G. Shulman, P. Eisenberger, W. E. Blumberg, and N. A. Stombaugh. Determination of the iron-sulfur distances in rubredoxin by x-ray absorption spectroscopy. Proc. Natl. Acad. Sci. USA, 72(10), 4003–4007 (1975).

    Article  ADS  Google Scholar 

  21. K. D. Watenpaugh, L. C. Sieker, and L. H. Jensen, Crystallographic refinement of rubredoxin at 1.2 Å resolution. J. Mol. Biol., 138(3), 615–633 (1980).

    Article  Google Scholar 

  22. S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, The molybdenum site of nitrogenase. Preliminary structural evidence from X-ray absorption spectroscopy. J. Am. Chem. Soc., 100(11), 3398–3407 (1978).

    Article  Google Scholar 

  23. O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, and D. C. Rees, Nitrogenase MoFe-protein at 1.16 Å resolution: A central ligand in the FeMo-cofactor. Science, 297(5587), 1696–1700 (2002).

    Article  ADS  Google Scholar 

  24. D. Ghosh, S. O‘Donnell, W. Furey Jr., A. H. Robbins, and C. D. Stout. Iron-sulfur clusters and protein structure of Azotobacter ferredoxin at 2.0 Å resolution. J. Mol. Biol., 158(1), 73–109, (1982).

    Article  Google Scholar 

  25. M. K. Johnson, R. S. Czernuszewicz, T. G. Spiro, J. A. Fee, and W. V. Sweeney Resonance Raman spectroscopic evidence for a common [3-iron-4-sulfur] structure among proteins containing three-iron centers J. Am. Chem. Soc. 105(22), 6671–6678 (1983).

    Article  Google Scholar 

  26. H. Beinert, M. H. Emptage, J. L. Dreyer, R. A. Scott, J. E. Hahn, K. O. Hodgson and A. J. Thomson. Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: evidence for [3Fe-4S] clusters. Proc. Natl. Acad. Sci. USA., 80(2), 393–396 (1983).

    Article  ADS  Google Scholar 

  27. G. N. George and S. J. George, X-ray crystallography and the spectroscopic imperative: the story of the [3Fe-4S] clusters. Trends. Biochem. Sci. 13(10), 369–370 (1988).

    Article  Google Scholar 

  28. G. H. Stout, S. Turley, L. Sieker, and L. H. Jensen, Structure of ferredoxin I from Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA., 85(4), 1020–1022 (1988).

    Article  ADS  Google Scholar 

  29. C. D. Stout, 7-Iron ferredoxin revisited. J. Biol. Chem., 263(19), 9256–9260 (1988).

    Google Scholar 

  30. G. N. George, J. Hilton, and K. V. Rajagopalan, K.V. X-ray Absorption spectroscopy of dimethylsulfoxide reductase from Rhodobacter sphaeroides. J. Am. Chem. Soc. 118(5), 1113–1117 (1996).

    Article  Google Scholar 

  31. H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan, and D. C. Rees. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science, 272 (5268), 1615–1621 (1996).

    Article  ADS  Google Scholar 

  32. F. Schneider, J. Loewe, R. Huber, H. Schindelin, C. Kisker, J. Knaeblein. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J. Mol. Biol., 263(1), 53–69 (1996).

    Article  Google Scholar 

  33. A. S. McAlpine, A. G. McEwan, A. L. Shaw, and S. Bailey. Molybdenum active center of DMSO reductase from Rhodobacter capsulatus: crystal structure of the oxidized enzyme at 1.82 Å resolution and the dithionite-reduced enzyme at 2.8 Å resolution. J. Biol. Inorg. Chem., 2(6), 690–701 (1997).

    Article  Google Scholar 

  34. A. S. McAlpine, A. G. McEwan, and S. Bailey, The high resolution crystal structure of DMSO reductase in complex with DMSO. J. Mol. Biol., 275(4), 613–623 (1998).

    Article  Google Scholar 

  35. G. N. George, J. Hilton, C. Temple, R. C. Prince, and K. V. Rajagopalan. The Structure of the Molybdenum Site of Dimethylsulfoxide Reductase. J. Am. Chem. Soc. 121(6), 1256–1266 (1999).

    Article  Google Scholar 

  36. H-K. Li, C. Temple, K. V. Rajagopalan, and H. Schindelin, The 1.3 Å crystal structure of Rhodobacter sphaeroides dimethyl sulfoxide reductase reveals two distinct molybdenum coordination environments. J. Am. Chem. Soc., 122(32), 7673–7680 (2000).

    Article  Google Scholar 

  37. C. Bagyinka, J. P. Whitehead, and M. J. Maroney, An x-ray absorption spectroscopic study of nickel redox chemistry in hydrogenase. J. Am. Chem. Soc. 115(9), 3576–3585, (1993).

    Article  Google Scholar 

  38. A. Volbeda, M-H., Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373(6515), 580–587 (1995).

    Article  ADS  Google Scholar 

  39. H. Ogata, S. Hirota, A. Nakahara, H. Komori, N. Shibata, T. Kato, K. Kano, and Y. Higuchi, Activation process of [NiFe] hydrogenase elucidated by high-resolution X-ray analyses: conversion of the ready to the unready state. Structure 13(11), 1635–1642, (2005).

    Article  Google Scholar 

  40. G. N. George, S. P. Cramer, T. G. Frey, and R. C. Prince, X-ray absorption spectroscopy of oriented cytochrome oxidase. Biochim. Biophys. Acta 1142, 240–252, (1993).

    Article  Google Scholar 

  41. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, and S. Yoshikawa. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269(5227), 1069–1074 (1995).

    Article  ADS  Google Scholar 

  42. H. S. Carr, G. N. George and D. R. Winge, Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I)-binding protein. J. Biol. Chem. 277(34), 31237–31242 (2002).

    Article  Google Scholar 

  43. F. Arnesano, L. Banci, I. Bertini, S. Mangani, and A. R. Thompsett, A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc. Natl. Acad. Sci. USA 100(7), 3814–3819 (2003).

    Article  ADS  Google Scholar 

  44. H. H. Harris, I. J. Pickering and G. N. George. The chemical Form of mercury in fish. Science, 301(5637), 1203 (2003).

    Article  Google Scholar 

  45. I. J. Pickering, L. Gumaelius, H. H. Harris, R. C. Prince, G. Hirsch, J. A. Banks, D. E. Salt, and G. N. George, Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ. Sci. Technol. (in the press, 2006).

    Google Scholar 

  46. J. Gailer, G. N. George, I. J. Pickering, R. C. Prince, S. C. Ringwald, J. E. Pemberton, R. S. Glass, H. Younis, D. W. DeYoung, and H. V. Aposhian, A metabolic link between arsenite and selenite: the seleno-bis(S-glutathionyl) arsinium ion. J. Am. Chem. Soc., 122(19), 4637–4639 (2000).

    Article  Google Scholar 

  47. S. A. Manley, G. N. George, I. J. Pickering, R. S. Glass, E. J. Prenner, R. Yamdagni, Q. Wu, and J. Gailer, The seleno bis(S-glutathionyl) arsinium ion is assembled in erythrocyte lysate. Chem. Res. Toxicol. 19(4); 601–607 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

George, G.N., Pickering, I.J. (2007). X-RAY ABSORPTION SPECTROSCOPY IN BIOLOGY AND CHEMISTRY. In: Tsakanov, V., Wiedemann, H. (eds) Brilliant Light in Life and Material Sciences. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5724-3_9

Download citation

Publish with us

Policies and ethics