Advertisement

IMPURITY STATES IN QUANTUM WELL WIRES AND QUANTUM DOTS WITH COATING

  • A.A. Kirakosyan
  • A.Kh. Manaselyan
  • M.M. Aghasyan
Conference paper
Part of the NATO Security through Science Series book series

Abstract

Many researchers are interested in quazi-one-dimensional (Q1D) and quazi-zero-dimensional (Q0D) heterostructures because of the scientific aspects of the phenomena and the extraordinary possibilities of numerous applications1-3. The properties of these kind of structures are due to their geometrical sizes and forms, and their component characteristics. As a consequence, the electron gas topology for nanoheterostructures becomes as a new degree of freedom4-7.

Keywords

Binding Energy Impurity State Impurity Centre Dielectric Constant Sphere Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Optical Properties of Semiconductor Quantum Dots, ed. by U. Woggon, Springer-Verlag, Heidelberg, 1997.Google Scholar
  2. 2.
    N.V. Tkach, I.V. Pronishin, A.M. Makhanec, Fiz. Tv. Tela (russian), 40, 557 (1998).Google Scholar
  3. 3.
    R.R.L. De Carvalho, J.R. Filho, G.A. Farias, and V.N. Fieire, Superlattices and Microstructures, 25, 221, (1999).CrossRefADSGoogle Scholar
  4. 4.
    C.L. Foden, M.L. Leadbeater, J.H. Burroughes, and M. Pepper. J. Phys. Cond. Mat., 6, L127 (1994).CrossRefADSGoogle Scholar
  5. 5.
    C.L. Foden, M.L. Leadbeater, and M. Pepper. Phys. Rev. B, 52, R8646 (1995).CrossRefADSGoogle Scholar
  6. 6.
    Jeongnim Kim, Lin-Wang Wang, and A. Zunger. Phys. Rev. B, 56, R15541 (1997).CrossRefADSGoogle Scholar
  7. 7.
    J.W. Brown and H.N. Spector. J. Appl. Phys., 59, 1179 (1986).CrossRefADSGoogle Scholar
  8. 8.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les editions de Physique, Cedex, France, 1988.Google Scholar
  9. 9.
    P. Harrison, Quantum Wells, Wires, and Dots. Theoretical and Computational Physics. John Wiley & Sons, New York, 1999.Google Scholar
  10. 10.
    A. Corella-Madueno, R.A. Rosas, J.L. Marin and R. Riera, Phys. Low-Dimens. Semicond. Struct. 5/6, 75 (1999).Google Scholar
  11. 11.
    N.S. Rytova, Vestnik MGU, 3, 30 (1967).Google Scholar
  12. 12.
    L.V. Keldish, Pisma v ZHETF, 29, 716 (1979).Google Scholar
  13. 13.
    S. Fraizzoli, F. Bassani and R. Buczko. Phys. Rev. B, 41, 5096, (1990).CrossRefADSGoogle Scholar
  14. 14.
    J. Cen, K.K. Bajaj, Phys. Rev. B, 48, 8061 (1993).CrossRefADSGoogle Scholar
  15. 15.
    F.A.P. Osorio, M.H. Degani, and O. Hipolito. Phys. Rev. B, 37, 1402 (1988).CrossRefADSGoogle Scholar
  16. 16.
    N. Porras-Montenegro, S.T. Peres-Merchancano, Phys. Rev. B 46, 9780 (1992).CrossRefADSGoogle Scholar
  17. 17.
    D.S. Chuu, C.M. Hsiao and W.N. Mei, Phys. Rev. B 46, 3898 (1992).CrossRefADSGoogle Scholar
  18. 18.
    N. Porras-Montenegro, S.T. Peres-Merchancano, and A. Latge, J. Appl. Phys., 74, 7624 (1993).CrossRefADSGoogle Scholar
  19. 19.
    J.L. Zhu, Xi Chen, Phys. Rev. B 50, 4497 (1994).CrossRefADSGoogle Scholar
  20. 20.
    F.J. Ribeiro and A. Latge, Phys. Rev. B 50, 4913 (1994).CrossRefADSGoogle Scholar
  21. 21.
    Z. Xiao, J. Zhu, F. He, Superlatt. Micristruct. 19, 137 (1996).CrossRefADSGoogle Scholar
  22. 22.
    C. Bose, C.K. Sarkar, Physica B 253, 238 (1998).CrossRefADSGoogle Scholar
  23. 23.
    C. Bose, J. Appl. Phys. 83, 3089 (1998).CrossRefADSGoogle Scholar
  24. 24.
    C.A. Duque, A. Montes, N. Porras-Montenegro and L.E. Oliveira, Semicond. Sci. Technol. 14, 496 (1996).CrossRefADSGoogle Scholar
  25. 25.
    C.Y. Hsieh, Chin. Journ. Phys. 38, 478 (2000).ADSGoogle Scholar
  26. 26.
    Z.Y. Deng, S.W. Gu, Phys. Rev. B 48 8083 (1993).CrossRefADSGoogle Scholar
  27. 27.
    Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Natl. Bur. Stand. Appl. Math. Series No. 55, edited by M. Abramowitz and I.A. Stegun, (U.S. GPO, Washington D.C., 1964).MATHGoogle Scholar
  28. 28.
    D.D. Ivanenko, A.A. Sokolov, Clasical Field Theory, Moscow & Leningrad, 1951.Google Scholar
  29. 29.
    S. Adachi. J. Appl. Phys., 58, R1 (1985).CrossRefADSGoogle Scholar
  30. 30.
    M.M. Aghasyan and A.A. Kirakosyan, J. Contemp. Phys. (Armenian Ac. Sci), 34, 17 (1999).Google Scholar
  31. 31.
    M.M. Aghasyan, A.A. Kirakosyan, Physica E 8, 281 (2000).CrossRefADSGoogle Scholar
  32. 32.
    A.Kh. Manaselyan, A.A. Kirakosyan, J. Contemp. Phys. (Armenian Academy of Sciences) 38, 15 (2003).Google Scholar
  33. 33.
    A.Kh. Manaselyan, A.A. Kiarakosyan, Physica E, 22, 825 (2004).CrossRefADSGoogle Scholar
  34. 34.
    S. Pescetelli, A. Di Carlo, and P. Lugli. Phys. Rev. B, 56, R1668 (1997).CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A.A. Kirakosyan
    • 1
  • A.Kh. Manaselyan
    • 1
  • M.M. Aghasyan
    • 2
  1. 1.Yerevan State UniversityYerevanArmenia
  2. 2.CANDLEYerevanArmenia

Personalised recommendations