GENETIC EFFECTS OF ELECTROMAGNETIC WAVES

  • Rouben Aroutiounian
  • Galina Hovhannisyan
  • Gennady Gasparian
Conference paper
Part of the NATO Security through Science Series book series

Abstract

The genetic effects of electromagnetic waves can be detected by different test-systems. The mutagenic effect of ionizing radiation can be developed on the levels of DNA and/or chromosomes. In numerous researches efficiency of micronucleus assay, alkaline single-cell gel electrophoresis, chromosomal aberrations test and FISH-technique and their different combinations for the detection of ionizing radiation-induced genotoxic effects are discussed. Also some molecular-biological approaches developed in the last years are presented.

Keywords

Microwave Superoxide Electrophoresis Kato Polynucleotide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Ahuja, Y.R., Vijayashree, B., Saran, R., Jayashri, E.L., Manoranjani, J.K., Bhargava, S.C., 1999, In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay, Oct, 36(5): 318–22.Google Scholar
  2. Arutyunyan, R., Martus, P., Neubauer, S., Birkenhake, S., Dunst, J., Sauer, R., Gebhart, E., 1998, Intercellular distribution of cytogenetic changes detected by chromosome painting in irradiated blood lymphocytes of cancer patients. Experimental Oncology, 20: 223–228.Google Scholar
  3. Arutyunyan R.M., Hovhannisyan G.G., Ghazanchyan E.G., Oganessian N.M., Nersesyan A.K., 2000, UV-C induced DNA damage in leukocytes of Chernobyl accident clean-up workers. Exp. Oncol., 22, 219–221.Google Scholar
  4. Arutyunyan, R., Neubauer, S., Martus, P., Dork, T., Stumm, M., Gebhart, E., 2001a, Intercellular distribution of aberrations detected by means of chromosome painting in cells of patients with cancer prone chromosome instability syndromes. Experimental Oncology, 23: 23–28.Google Scholar
  5. Arutyunyan R.M., Hovhannisyan G.G., Ghazanchyan E.G., Oganessian N.M., Nersesyan A.K., 2001b, DNA damage induced by UV-C irradiation in leukocytes of Chernobyl accident clean-up workers, Central European Journal and Environmental Medicine, 7(1): 15–21.Google Scholar
  6. Au, W.W., 1991, Monitoring human populations for effects of radiation and chemical exposures using cytogenetic techniques. Occup Med., 4:597–611.Google Scholar
  7. Blakely, W.F., Miller, A.C., Grace, M.B., McLeland, C.B., Luo, L., Muderhwa, J.M., Miner, V.L., Prasanna, P.G., 2003, Radiation biodosimetry: applications for spaceflight. Adv Space Res. 31(6): 1487–93.CrossRefADSGoogle Scholar
  8. Bochkov, N.P., Chebotarev, A.N., 1989, Human heredity and environmental mutagens, Meditsina, Moscow (In Russian).Google Scholar
  9. Chaizhunusova, N., Yang, T.C., Land, C., Luckyanov, N., Wu, H., Apsalikov, K.N., Madieva, M., 2006, Biodosimetry study in Dolon and Chekoman villages in the vicinity of Semipalatinsk nuclear test site. J Radiat Res (Tokyo). 47, A: A165–9.CrossRefGoogle Scholar
  10. Cloos, J., Nieuwenhuis, E.J.C., Boomsma, D.I., Kuik, D.J., Van der Sterre, M.L.T., Arwert, F., Snow, G.B., Braakhuis, B.J.M., 1999, Inherited susceptibility to bleomycin-induced chromatid breaks in cultured peripheral blood lymphocytes, J. Natl. Cancer Inst., 91: 1125–1130.CrossRefGoogle Scholar
  11. Cytogenetic effects of ionizing radiation in peripheral lymphocytes of ISS crewmembers (http://exploration.nasa.gov/programs/station/Chromosome-2.html), 2005.Google Scholar
  12. Durante, M., Kawata, T., Nakano, T., Yamada, S., Tsujii, H., 1998, Biodosimetry of heavy ions by interphase chromosome painting, Adv Space Res. 22(12): 1653–62.CrossRefADSGoogle Scholar
  13. Emerit, I., Levy, A., Cernjavski, L., Arutyunyan, R., Oganesyan, N., Pogosian, A., Mejlumian, H., Sarkisian, T., Gulkandanian, M., Quastel, M., et al. 1994, Transferable clastogenic activity in plasma from persons exposed as salvage personnel of the Chernobyl reactor, J Cancer Res Clin Oncol., 120(9): 558–61.CrossRefGoogle Scholar
  14. Emerit, I., Arutyunyan, R., Oganesian, N., Levy, A., Cernjavsky, L., Sarkisian, T., Pogossian, A., Asrian, K., 1995, Radiation-induced clastogenic factors: anticlastogenic effect of Ginkgo biloba extract. Free Radic Biol Med., Jun, 18(6): 985–91.CrossRefGoogle Scholar
  15. Fedorenko, B., Druzhinin, S., Yudaeva, L., Petrov, V., Akatov, Y., Snigiryova, G., Novitskaya, N., Shevchenko, V., Rubanovich, A., 2001, Cytogenetic studies of blood lymphocytes from cosmonauts after long-term space flights on Mir station. Adv Space Res. 27(2): 355–9.CrossRefADSGoogle Scholar
  16. Fenech, M., Morley, A.A., 1986, Cytokinesis – block micronucleus method in human lymphocytes: effect of in vivo ageing and low doses X-irradiation, Mutat Res., 161: 193–8.Google Scholar
  17. Gajendiran, N., Tanaka, K., Kamada, N., 2000, Comet assay to sense neutron “fingerprint”, Mut. Res., 452, 2, 179–187.Google Scholar
  18. Garaj-Vrhovac, V., Kopjar, N., Razem, D., Vekic, B., Miljanic, S., Ranogajec-Komor, M., 2002, Application of the alkaline comet assay in biodosimetry: assessment of in vivo DNA damage in human peripheral leukocytes after a gamma radiation incident, Radiat Prot Dosimetry, 98(4): 407–16.Google Scholar
  19. Garaj-Vrhovac, V., Kopjar, N., 2003, The alkaline Comet assay as biomarker in assessment of DNA damage in medical personnel occupationally exposed to ionizing radiation. Mutagenesis, May; 18(3): 265–71.CrossRefGoogle Scholar
  20. Gebhart, E., Arutyunyan, R.M., 1991, Anticlastogens in Mammalian and Human Cells, Springer-Verlag Berlin Heidelberg New York, 125p.Google Scholar
  21. Grace, M.B., McLeland, C.B., Blakely, W.F., 2002, Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry. Int J Radiat Biol., 78(11): 1011–21.CrossRefGoogle Scholar
  22. Greulich, K.M., Kreja, L., Heinze, B., Rhein, A.P., Weier, H.G., Bruckner, M., Fuchs, P., Molls, M., 2000, Rapid detection of radiation-induced chromosomal aberrations in lymphocytes and hematopoietic progenitor cells by mFISH. Mutat Res., Jul 20; 452(1): 73–81.Google Scholar
  23. Horstmann, M., Durante, M., Johannes, C., Pieper, R., Obe, G., 2005, Space radiation does not induce a significant increase of intrachromosomal exchanges in astronauts‘ lymphocytes. Radiat Environ Biophys. 44(3): 219–24.CrossRefGoogle Scholar
  24. Jones, I.M., Galick, H., Kato, P., Langlois, R.G., Mendelsohn, M.L., Murphy, G.A., Pleshanov, P., Ramsey, M.J., Thomas, C.B., Tucker, J.D., Tureva, L., Vorobtsova, I., Nelson, D.O., 2002, Three somatic genetic biomarkers and covariates in radiationexposed Russian cleanup workers of the chernobyl nuclear reactor 6–13 years after exposure. Radiat Res., Oct; 158(4): 424–42.CrossRefGoogle Scholar
  25. Kopjar, N., Garaj-Vrhovac, V., 2005, Assessment of DNA damage in nuclear medicine personnel-comparative study with the alkaline comet assay and the chromosome aberration test, Int J Hyg Environ Health, 208(3): 179–91.CrossRefGoogle Scholar
  26. Leonard, A., Rueff, J., Gerber, G.B., Leonard, E.D., 2005, Usefulness and limits of biological dosimetry based on cytogenetic methods, Radiat Prot Dosimetry, 115(1–4): 448–54.CrossRefGoogle Scholar
  27. Maluf, S.W., 2004, Monitoring DNA damage following radiation exposure using cytokinesis-block micronucleus method and alkaline single-cell gel electrophoresis. Clinica Chimica Acta 347, 15–24CrossRefGoogle Scholar
  28. Marcon, F., Andreoli, C., Rossi, S., Verdina, A., Galati, R., Crebelli, R., 2003, Assessment of individual sensitivity to ionizing radiation and DNA repair efficiency in a healthy population. Mutat Res., Nov 10; 541(1–2): 1–8.Google Scholar
  29. Maznik, N.A., Vinnikov, V.A., 2005a, The retrospective cytogenetic dosimetry using the results of conventional chromosomal analysis in Chernobyl clean-up workers, Radiats. Biol. Radioecol., 45(6): 700–8.Google Scholar
  30. Maznyk, N.A., Vinnikov, V.A., 2005b, Possibilities and limitations of fluorescence in situ hybridization technique in retrospective detection of low dose radiation exposure in postchernobyl human cohorts. Tsitol. and Genet., Jul-Aug; 39(4): 25–31.Google Scholar
  31. Mosse, I.B., 2002, Modern problems of biodosimetry, Radiats. Biol. Radioecol., 42(6): 661–4.Google Scholar
  32. Muller, W.U., Dietl, S., Wuttke, K., Reiners, C., Biko, J., Demidchik, E., Streffer, C., 2004, Micronucleus formation in lymphocytes of children from the vicinity of Chernobyl after (131)I therapy. Radiat Environ Biophys, May; 43(1) 7–13.CrossRefGoogle Scholar
  33. Nagaoka, S., Nakano, T., Endo, S., Onizuka, T., Kagawa, Y., Fujitaka, K., Ohnishi, K., Takahashi, A., Ohnishi, T., 1999, Detection of DNA damages and repair in human culture cells with simulated space radiation. Acta Astronaut., Apr-Jun; 44(7–12): 561–7.CrossRefADSGoogle Scholar
  34. Neubauer, S., Arutyunyan, R., Stumm, M., Dork, T., Bendix, R., Bremer, M., Varon, R., Sauer, R., Gebhart, E., 2002, Radiosensitivity of ataxia telangiectasia and Nijmegen breakage syndrome homozygotes and heterozygotes as determined by three-color FISH chromosome painting, Radiat. Res., 157: 312–21.CrossRefGoogle Scholar
  35. Park, W.Y., Hwang, C.I., Im, C.N., Kang, M.J., Woo, J.H., Kim, J.H., Kim, Y.S., Kim, J.H., Kim, H., Kim, K.A., Yu, H.J., Lee, S.J., Lee, Y.S., Seo, J.S., 2002, Identification of radiation-specific responses from gene expression profile. Oncogene, 21(55): 8521–8.CrossRefGoogle Scholar
  36. Paulraj, R., Behari, J., 2006, Single strand DNA breaks in rat brain cells exposed to microwave radiation, Mut. Res., 596, 76–80.Google Scholar
  37. Pilinskaia, M.A., Shemetun, A.M., Dybskii, S.S., Dybskaia, E.B., Pedan, L.R., Shemetun, E.V., 2001, The results of 14-year cytogenetic monitoring of priority follow-up groups of Chernobyl accident victims, Vestn. Ross. Akad. Med. Nauk, 10: 80–4.Google Scholar
  38. Plappert, U., Raddatz, K., Roth, S., Fliedner, T.M., 1995, DNA-damage detection in man after radiation exposure–the comet assay–its possible application for human biomonitoring, Stem Cells, 13 Suppl 1: 215–22.Google Scholar
  39. Prasanna, P.G., Hamel, C.J., Escalada, N.D., Duffy, K.L., Blakely, W.F., 2002, Biological dosimetry using human interphase peripheral blood lymphocytes. Mil Med., 167(2): 10–2.Google Scholar
  40. Sasaki, M.S., 2003, Chromosomal biodosimetry by unfolding a mixed Poisson distribution: a generalized model, Int. J. Radiat. Biol., 79(2): 83–97CrossRefGoogle Scholar
  41. Scassellati Sforzolini, G., Moretti, M., Villarini, M., Fatigoni, C., Pasquini, R., 2004, Evaluation of genotoxic and/or co-genotoxic effects in cells exposed in vitro to extremely-low frequency electromagnetic fields, Ann Ig., Jan-Apr; 16(1–2): 321–40.Google Scholar
  42. Szeles, A., Joussineau, S., Lewensohn, R., Lagercrantz, S., Larsson, C., 2006, Evaluation of spectral karyotyping (SKY) in biodosimetry for the triage situation following gamma irradiation, Int. J. Radiat. Biol., 82(2): 87–96.CrossRefGoogle Scholar
  43. Sevan‘kaev, A.V., Lloyd, D.C., Edwards, A.A., Khvostunov, I.K., Mikhailova, G.F., Golub, E.V., Shepel, N.N., Nadejina, N.M., Galstian, I.A., Nugis, V.Y., Barrios, L., Caballin, M.R., Barquinero, J.F., 2005, A cytogenetic follow-up of some highly irradiated victims of the Chernobyl accident. Radiat. Prot. Dosimetry, 113(2): 152–61.CrossRefGoogle Scholar
  44. Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L., 1988, A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184–91.CrossRefGoogle Scholar
  45. Snyder, A.R., Morgan, W.F., 2004, Radiation-induced chromosomal instability and gene expression profiling: searching for clues to initiation and perpetuation, Mutat. Res., 568(1): 89–96.Google Scholar
  46. Tanaka, K., Iida, S., Takeichi, N., Chaizhunusova, N.J., Gusev, B.I., Apsalikov, K.N., Inaba, T., Hoshi, M., 2006, Unstable-type chromosome aberrations in lymphocytes from individuals living near Semipalatinsk nuclear test site, J. Radiat. Res. (Tokyo), 47 Suppl A: A159–64CrossRefGoogle Scholar
  47. Touil, N., Aka, P.V., Buchet, J.P., Thierens, H., Kirsch-Volders, M., 2002, Assessment of genotoxic effects related to chronic low level exposure to ionizing radiation using biomarkers for DNA damage and repair, Mutagenesis, May; 17(3): 223–32.CrossRefGoogle Scholar
  48. Tucker, J.D., 2001, Fish cytogenetics and the future of radiation biodosimetry, Radiat Prot Dosimetry, 97(1): 55–60.Google Scholar
  49. Tucker, J.D., 2002, Sensitivity, specificity, and persistence of chromosome translocations for radiation biodosimetry, Mil Med., 167(2): 8–9.Google Scholar
  50. Tuimala J., Szekely G., Gundy S., Hirvonen A., Norppa H., 2002, Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity, Carcinogenesis, 23: 1003–1008.CrossRefGoogle Scholar
  51. Verdorfer, I., Neubauer, S., Letzel, S., Angerer, J., Arutyunyan, R., Martus, P., Wucherer, M., Gebhart, E., 2001, Chromosome painting for cytogenetic monitoring of occupationally exposed and non-exposed groups of human individuals, Mutat Res., 491: 97–109.Google Scholar
  52. Vijayalaxmi, Obe G., 2005, Controversial cytogenetic observations in mammalian somatic cells exposed to extremely low frequency electromagnetic radiation: a review and future research recommendations, Bioelectromagnetics, 26(5): 412–30.CrossRefGoogle Scholar
  53. Voisin, P., Roy, L., Benderitter, M., 2004, Why can‘t we find a better biological indicator of dose? Radiat Prot Dosimetry, 112(4): 465–9.CrossRefGoogle Scholar
  54. Ward, J.F., 1975, Molecular mechanisms of radiation-induced damage to nucleic acid. In: Lett JT, Adler H, editors, Advances in radiation biology, New York: Academic Press, 182–239.Google Scholar
  55. Wojewodzka, M., Kruszewski, M., Iwanenko, T., Collins, A.R., Szumiel, I., 1998, Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. I. Strand breakage, Mutat. Res., 416(1–2): 21–35.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Rouben Aroutiounian
    • 1
  • Galina Hovhannisyan
    • 1
  • Gennady Gasparian
    • 1
  1. 1.Department of Genetics and CytologyYerevan State UniversityYerevanArmenia

Personalised recommendations