The very slow chemical and physical weathering rates in desert areas coupled with a relatively high efficiency of wash processes, due to the general sparseness of vegetation, results in more widespread occurrence of slopes with little or no regolith than in areas with humid climates. This chapter outlines the processes and landforms occurring on desert slopes that are either massive bedrock or are scarps and cuestas in layered rocks dominated by outcropping resistant rock layers.


Rock Slope Snow Avalanche Colorado Plateau Grand Canyon Rock Mass Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, A.D. and A.J. Parsons 1987. Identification of strength equilibrium rock slopes: further statistical considerations. Earth Surface Processes and Landforms 12, 631–5.Google Scholar
  2. Ackroyd, P. 1987. Erosion by snow avalanche and implications for geomorphic stability, Torlesse Range, New Zealand. Arctic and Alpine Research 19, 65–80.Google Scholar
  3. Ahnert, F. 1960. The influence of Pleistocene climates upon the morphology of cuesta scarps on the Colorado Plateau. Annals of the American Association of Geographers 50, 139–56.Google Scholar
  4. Ahnert, F. 1976. Darstellung des Structureinflusses auf de Oberflachenformen in theoretischen Modell. Zeitschrift für Geomorphologie Supplement Band 24, 11–22.Google Scholar
  5. Akerman, H.J. 1984. Notes on talus morphology and processes in Spitsbergen. Geografiska Annaler 66A, 267–84.Google Scholar
  6. Allison, R.J. and A.S. Goudie 1990a. The form of rock slopes in tropical limestone and their associations with rock mass strength. Zeitschrift für Geomorphologie 34, 129–48.Google Scholar
  7. Allison, R.J. and A.S. Goudie 1990b. Rock control and slope profiles in a tropical limestone environment: the Napier Range of Western Australia. Geographical Journal 156, 200–11.Google Scholar
  8. Anderson, M.G. and K.S. Richards (eds) 1987. Slope stability – geotechnical engineering and geology. Chichester: Wiley.Google Scholar
  9. Aronsson, G.K. and K. Linde 1982. Grand Canyon – a quantitative approach to the erosion and weathering of a stratified bedrock. Earth Surface Processes and Landforms 7, 589–99.Google Scholar
  10. Augustinus, P.C. and M.J. Selby 1990. Rock slope development in McMurdo Oasis, Antarctica, and implications for interpretation of glacial history. Geografiska Annaler 72A, 55–62.Google Scholar
  11. Baker, V.R., R.C. Kochel, J.E. Laity and A.D. Howard 1990. Spring sapping and valley network development. In Groundwater geomorphology, C.G. Higgins and D.R. Coates (eds), 235–65. Geological Society of America Special Paper 252.Google Scholar
  12. Bakker, J.P. and J.W.N. Le Heux 1952. A remarkable new geomorphological law. Koninklijke Nederlandsche Academic van Wetenschappen B55, 399–410, 554–71.Google Scholar
  13. Bieniawski, Z.T. 1989. Engineering rock mass classifications. New York: Wiley.Google Scholar
  14. Blackwelder, E. 1942. The process of mountain sculpture by rolling debris. Journal of Geomorphology 4, 324–8.Google Scholar
  15. Blasius, K.R., J.A. Cutts, J.E. Guest and H. Masursky 1977. Geology of the Valles Marineris: first analysis of imaging from Viking 1 orbiter primary mission. Journal of Geophysical Research 82, 4067–91.Google Scholar
  16. Bock, H. 1979. Experimental determination of the residual stress field in a basaltic column. Proceedings of the International Congress on Rock Mechanics Montreux 1, 45–9; 3, 136–7.Google Scholar
  17. Bornhardt, W. 1900. Zur Oberflachengestaltung und Geologie Deutsch-Ostafrikas. Berlin: Reimer.Google Scholar
  18. Bouchard, M. 1985. Weathering and weathering residuals on the Canadian Shield. Fennia 163, 327–32.Google Scholar
  19. Boyé, M. and P. Fritsch 1973. Degagement artificiel d’un dome cristallin au Sud Cameroun. In Cinq etudes de geomorphologie et de palynologie travaux et documents de geographic tropicale. CEGET-CNRS 8, 31–63.Google Scholar
  20. Bradley, W.C. 1963. Large-scale exfoliation in massive sandstones of the Colorado Plateau. Bulletin of the Geological Society of America 74, 519–28.Google Scholar
  21. Brady, B.H.G. and E.T. Brown 1985. Rock mechanics for underground mining. London: George Allen&Unwin.Google Scholar
  22. Brown, E.T. 1981. Rock characterization testing and monitoring: ISRM suggested methods. Oxford: Pergamon.Google Scholar
  23. Brown, G.F., D.L. Schmidt and A.C. Huffman 1989. Geology of the Arabian Peninsula: shield area of western Saudi Arabia. U.S. Geological Survey Professional Paper 560-A.Google Scholar
  24. Brunsden, D. and D.B. Prior (eds) 1984. Slope instability. Chichester: Wiley.Google Scholar
  25. Bryan, K. 1928. Niches and other cavities in sandstones at Chaco Canyon, N. Mexico. Zeitschrift für Geomorphologie 3, 125–40.Google Scholar
  26. Budel, J. 1957. Die ‘doppelten Einebnungsflachen’ in den feuchten Tropen. Zeitschrift für Geomorphologie 1, 201–88.Google Scholar
  27. Budel, J. 1982. Climatic geomorphologie (translated by L. Fischer and D. Busche). Princeton: Princeton University Press.Google Scholar
  28. Burke, K. and G.L. Wells 1989. Trans-African drainage system of the Sahara: was it the Nile? Geology 17, 743–7.Google Scholar
  29. Buser, O. and H. Frutiger 1980. Observed maximum run-out distance of snow avalanches and the determination of the friction coefficients mu and epsilon. Journal of Glaciology 94, 121–30.Google Scholar
  30. Campbell, I.A. 1973. Controls of canyon and meander forms by jointing. Area 5, 291–6.Google Scholar
  31. Cannon, S.H. and W.Z. Savage 1988. A mass-change model for the estimation of debris-flow runout. Journal of Geology 96, 221–7.Google Scholar
  32. Carson, M.A. 1971. An application of the concept of threshold slopes to the Laramie Mountains, Wyoming. Institute of British Geographers Special Publication 3, 31–47.Google Scholar
  33. Carson, M.A. and M.J. Kirkby 1972. Hillslope form and process. Cambridge: Cambridge University Press.Google Scholar
  34. Carson, M.A. and D.J. Petley 1970. The existence of threshold slopes in the denudation of the landscape. Transactions of the Institute of British Geographers 49, 71–95.Google Scholar
  35. Conca, J.L. and G.R. Rossman 1982. Case hardening of sandstone. Geology 10, 520–33.Google Scholar
  36. Cooke, R.U. and I.J. Smalley 1968. Salt weathering in deserts. Nature 220, 1226–7.Google Scholar
  37. Cooke, R.U. and A. Warren 1973. Geomorphology in deserts. Berkeley: University of California Press.Google Scholar
  38. Corner, C.D. 1980. Avalanche impact landforms in Troms, north Norway. Geografiska Annaler 62A, 1–10.Google Scholar
  39. Cotton, C.A. and A.T. Wilson 1971. Ramp forms that result from weathering and retreat of precipitous slopes. Zeitschrift für Geomorphologie 15, 199–211.Google Scholar
  40. Dale, T.N. 1923. The commercial granites of New England. U.S. Geological Survey Bulletin 738, 488p.Google Scholar
  41. Davis, W.M. 1901. An excursion into the Grand Canyon of the Colorado. Harvard Museum of Comparative Zoology and Geology 5, 105–201.Google Scholar
  42. Dent, J.D. and T.E. Lang 1980. Modeling of snow flow. Journal of Glaciology 26, 131–40.Google Scholar
  43. Dent, J.D. and T.E. Lang 1983. A biviscous modified Bingham model of snow avalanche motion. Annals of Glaciology 4, 42–6.Google Scholar
  44. Doelling, H.H. 1985. Geology of Arches National Park. Utah Geological and Mineral Survey, Map 4.Google Scholar
  45. Dutton, C.E. 1882. Tertiary history of the Grand Canyon district. U.S. Geological Survey Monograph 2.Google Scholar
  46. Einstein, H.H. and W.S. Dershowitz 1990. Tensile and shear fracturing in predominantly compressive stress fields – a review. Engineering Geology 29, 149–72.Google Scholar
  47. Erhart, H. 1956. La genese des sols. Esquise d’une theorie geologique. Paris: Masson.Google Scholar
  48. Fairbridge, R.W. 1988. Cyclical patterns of exposure, weathering and burial of cratonic surfaces, with some examples from North America and Australia. Geografiska Annaler 70A, 277–83.Google Scholar
  49. Falconer, J.D. 1911. The geology and geography of northern Nigeria. London: Macmillan.Google Scholar
  50. Gardiner, J. 1970. Geomorphic significance of avalanches in the Lake Louise area, Alberta, Canada. Arctic and Alpine Research 2, 135–44.Google Scholar
  51. Gardiner, J. 1983. Observations on erosion by wet snow avalanches, Mount Rae area, Alberta, Canada. Arctic and Alpine Research 15, 271–4.Google Scholar
  52. Gardiner, V. and R. Dackombe 1983. Geomorphological field manual. London: George Allen and Unwin.Google Scholar
  53. Gerber, E.K. and A.E. Scheidegger 1973. Erosional and stress-induced features on steep slopes. Zeitschrift für Geomorphologie Supplement Band 18, 38–49.Google Scholar
  54. Gerson, R. 1982. Talus relics in deserts: a key to major climatic fluctuations. Israel Journal of Earth Sciences 31, 123–32.Google Scholar
  55. Gerson, R. and S. Grossman 1987. Geomorphic activity on escarpments and associated fluvial systems in hot deserts. In Climate history, periodicity, predictability, M.R. Rampino, J.S. Sanders, R.E. Newman and L.K. Konigsson (eds), 300–22. New York: Van Nostrand Reinhold.Google Scholar
  56. Gilbert, G.K. 1904. Domes and dome structures of the High Sierra. Bulletin of the Geological Society of America 15, 29–36.Google Scholar
  57. Gregory, H.E. 1917. Geology of the Navajo country. U.S. Geological Survey Professional Paper 93.Google Scholar
  58. Habermehl, M.A. 1980. The Great Artesian Basin, Australia. BMR Journal of Geology and Geophysics 5, 9–38.Google Scholar
  59. Hack, J.T. 1966. Interpretation of Cumberland escarpment and Highland rim, South-central Tennessee and northeast Alabama. U.S. Geological Survey Professional Paper 524-C.Google Scholar
  60. Hack, J.T. 1980. Rock control and tectonism; their importance in shaping the Appalachian Highlands. U.S. Geological Survey Professional Paper 1126-A–J, pp. B1-B17.Google Scholar
  61. Hall, A.M. 1986. Deep weathering patterns in north-east Scotland and their geomorphological significance. Zeitschrift für Geomorphologie 30, 407–22.Google Scholar
  62. Hall, A.M. 1988. The characteristics and significance of deep weathering in the Gaick area, Grampian Highlands, Scotland. Geografiska Annaler 70A, 309–14.Google Scholar
  63. Hamilton, W.L. 1984. The sculpturing of Zion. Zion National Park: Zion Natural History Association.Google Scholar
  64. Haxby, W.F. and D.L. Turcotte 1976. Stresses induced by the addition or removal of overburden and associated thermal effects. Geology 4, 181–4.Google Scholar
  65. Hewett, K. 1972. The mountain environment and geomorphic processes. In Mountain geomorphology, H.O. Slaymaker and H.J. McPherson (eds), 17–34. Vancouver: Tantalus Press.Google Scholar
  66. Higgins, C.G. 1984. Piping and sapping: development of landforms by groundwater flow. In Groundwater as a geomorphic agent, R.G. LaFleur (ed), 18–58. Boston: Allen&Unwin.Google Scholar
  67. Higgins, C.G. and W.R. Osterkamp 1990. Seepage-induced cliff recession and regional denudation. In Groundwater geomorphology, C.G. Higgins and D.R. Coates (eds), 291–317, Geological Society of America Special Paper 252.Google Scholar
  68. Hoek, E. and J.W. Bray 1981. Rock slope engineering. London: Institution of Mining and Metallurgy.Google Scholar
  69. Howard, A.D. 1970. A study of process and history in desert landforms near the Henry Mountains, Utah. Unpublished Ph.D. dissertation. Baltimore: Johns Hopkins University.Google Scholar
  70. Howard, A.D. 1988. Groundwater sapping experiments and modeling. In Sapping features of the Colorado Plateau, A.D. Howard, R.C. Kochel and H.E. Holt (eds), 71–83, Washington: National Aeronautics and Space Administration SP-491.Google Scholar
  71. Howard, A.D. 1989. Miniature analog of spur-and-gully landforms in Valles Marineris scarps. Reports of the planetary geology and geophysics program – 1988. Washington: National Aeronautics and Space Administration TM 4130, 355–7.Google Scholar
  72. Howard, A.D. 1990. Preliminary model of processes forming spur-and-gully terrain. Reports of the planetary geology and geophysics program – 1989. Washington: National Aeronautical and Space Administration TM 4210, 345–7.Google Scholar
  73. Howard, A.D. 1995. Simulation modeling and statistical classification of escarpment planforms, Geomorphology 12, 187–214.Google Scholar
  74. Howard, A.D. and G.R. Kerby 1983. Channel changes in badlands. Bulletin of the Geological Society of America 94, 739–52.Google Scholar
  75. Howard, A.D. and R.C. Kochel 1988. Introduction to cuesta landforms and sapping processes on the Colorado Plateau. In Sapping features of the Colorado Plateau. A.D. Howard, R.C. Kochel and H.E. Holt (eds), 6–56. Washington: National Aeronautics and Space Administration SP-491.Google Scholar
  76. Howard, A.D., R.C. Kochel and H.E. Holt (eds) 1988. Sapping features of the Colorado Plateau. Washington: National Aeronautics and Space Administration SP-491.Google Scholar
  77. Idnurm, M. and B.R. Senior 1978. Palaeomagnetic ages of Late Cretaceous and Tertiary weathered profiles in the Eromanga Basin, Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology 24, 263–77.Google Scholar
  78. Jahns, R.H. 1943. Sheet structure in granites, its origin and use as a measure of glacial erosion in New England. Journal of Geology 51, 71–98.Google Scholar
  79. Jennings, J.N. 1983. Sandstone pseudokarst or karst. In Aspects of Australian sandstone landscapes, 21–30. Australian and New Zealand Geomorphology Group, Special Publication 1.Google Scholar
  80. Kemp, E.M. 1981. Tertiary palaeogeography and the evolution of Australian climate. In Ecological biogeography of Australia, A. Keast (ed), 33–49. The Hague: W. Junk.Google Scholar
  81. Kochel, R.C. and G.W. Riley 1988. Sedimentologic and stratigraphic variations in sandstones of the Colorado Plateau and their implications for groundwater sapping. In Sapping features of the Colorado Plateau, A.D. Howard, R.C. Kochel and H.E. Holt (eds), 57–62. Washington: National Aeronautics and Space Administration SP-491.Google Scholar
  82. Koons, D. 1955. Cliff retreat in the southwestern United States. American Journal of Science 253, 44–52.Google Scholar
  83. Korsch, R.J. 1982. Mount Duval: geomorphology of a near-surface granite diapir. Zeitschrift für Geomorphologie 26, 151–62.Google Scholar
  84. Laity, J.E. 1983. Diagenetic controls on groundwater sapping and the valley formation, Colorado Plateau, as revealed by optical and electron microscopy. Physical Geography 4, 103–25.Google Scholar
  85. Laity, J. 1988. The role of groundwater sapping in valley evolution on the Colorado Plateau. In Sapping features of the Colorado Plateau. A.D. Howard, R.C. Kochel and H.E. Holt (eds), 63–70. Washington: National Aeronautics and Space Administration SP-491.Google Scholar
  86. Laity, J.E. and M.C. Malin 1985. Sapping processes and the development of theater-headed valley networks in the Colorado Plateau. Bulletin of the Geological Society of America 96, 203–17.Google Scholar
  87. Lang, T.E. and J.D. Dent 1982. Review of surface friction, surface resistance, and flow of snow. Reviews of Geophysics and Space Physics 20, 21–37.Google Scholar
  88. Lange, A.L. 1959. Introductory notes on the changing geometry of cave structures. Cave Studies 11, 66–90.Google Scholar
  89. Lee, C.F. 1978. Stress relief and cliff stability at a power station near Niagara Falls. Engineering Geology 12, 193–204.Google Scholar
  90. Lehmann, O. 1933. Morphologishe Theorie der Vervitterung von Steinschlag Wandern. Vierteljahrschrift der Naturforschende Gesellschaft in Zürich 87, 83–126.Google Scholar
  91. Lindquist, R.C. 1979. Genesis of the erosional forms of Bryce Canyon National Park. Proceedings of the 1st conference on scientific research in the National Parks 2, 827–34. Washington, DC: National Park Service.Google Scholar
  92. Lucchitta, B.K. 1978. Morphology of chasma walls, Mars. Journal of Research, U.S. Geological Survey 6, 651–62.Google Scholar
  93. Lucchitta, I. 1975. Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona – Part IV B, the Shivwits Plateau. National Aeronautics and Space Administration Technical Report 32-1597, 41–72.Google Scholar
  94. Luckman, B.H. 1977. The geomorphic activity of snow avalanches. Geografiska Annaler 59A, 31–48.Google Scholar
  95. Luckman, B.H. 1978. Geomorphic work of snow avalanches in the Canadian Rocky Mountains. Arctic and Alpine Research 10, 261–76.Google Scholar
  96. Mainguet, M. 1972. Le modelegdes gres. Paris: Institut Geographique National.Google Scholar
  97. Martinelli, M. Jr, T.E. Lang and A.I. Mears 1980. Calculations of avalanche friction coefficients from field data. Journal of Glaciology 26, 109–19.Google Scholar
  98. Matthes, F.E. 1938. Avalanche sculpture in the Sierra Nevada of California. International Association of Scientific Hydrology Bulletin 23, 631–7.Google Scholar
  99. Maxwell, T.A. 1982. Erosional patterns of the Gilf Kebir Plateau and implications of the origin of Martian canyonlands. In Desert landforms of southwest Egypt: a basis for comparison with Mars, F. El-Baz and T.A. Maxwell (eds), 207–39. Washington; National Aeronautics and Space Administration CR-3611.Google Scholar
  100. McClung, D.M. and P.A. Schaerer 1983. Determination of avalanche dynamics friction coefficients from measured speeds. Annals of Glaciology 4, 170–3.Google Scholar
  101. McEwen, A.S. and M.C. Malin 1990. Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast. Journal of Volcanology and Geothermal Research 37, 205–31.Google Scholar
  102. McGarr, A. and N.C. Gay 1978. State of stress in the earth’s crust. Annual Review of Earth and Planetary Sciences 6, 405–36.Google Scholar
  103. McGill, G.E. and A.W. Stromquist 1975. Origin of graben in the Needles District, Canyonlands National Park, Utah. Four Corners Geological Society Guidebook, 8th Field Conference, 235–43.Google Scholar
  104. Moon, B.P. 1984a. The form of rock slopes in the Cape Fold Mountains. The South African Geographical Journal 66, 16–31.Google Scholar
  105. Moon, B.P. 1984b. Refinement of a technique for measuring rock mass strength for geomorphological purposes. Earth Surface Processes and Landforms 9, 189–93.Google Scholar
  106. Moon, B.P. 1986. Controls on the form and development of rock slopes in fold terrane. In Hillslope processes, A.D. Abrahams (ed), 225–43. Boston: Allen & Unwin.Google Scholar
  107. Moon, B.P. and M.J. Selby 1983. Rock mass strength and scarp forms in southern Africa. Geografiska Annaler 65A, 135–45.Google Scholar
  108. Mustoe, G.E. 1982. Origin of honeycomb weathering. Bulletin of the Geological Society of America 93, 108–15.Google Scholar
  109. Mustoe, G.E. 1983. Cavernous weathering in the Capitol Reef Desert, Utah. Earth Surface Processes and Landforms 8, 517–26.Google Scholar
  110. Nicholas, R.M. and J.C. Dixon 1986. Sandstone scarp form and retreat in the Land of Standing Rocks, Canyonlands National Park, Utah. Zeitschrift für Geomorphologie 30, 167–87.Google Scholar
  111. Oberlander, T.M. 1972. Morphogenesis of granitic boulder slopes in the Mojave Desert California. Journal of Geology 80, 1–20.Google Scholar
  112. Oberlander, T.M. 1977. Origin of segmented cliffs in massive sandstones of southeastern Utah. In Geomorphology in arid regions, D.O. Doehring (ed), 79–114. Binghamton, NY: Publications in Geomorphology.Google Scholar
  113. Oberlander, T.M. 1989. Slope and pediment systems. In Arid zone geomorphology, D.S.G. Thomas (ed), 56–84. New York: Halsted Press.Google Scholar
  114. Ollier, C.D. 1988. Deep weathering, groundwater and climate. Geografiska Annaler 70A, 285–90.Google Scholar
  115. Ollier, C.D. and C.F. Pain 1981. Active gneiss domes in Papua New Guinea, new tectonic landforms. Zeitschrift für Geomorphologie 25, 133–45.Google Scholar
  116. O’Loughlin, C.L. and A.J. Pearce 1982. Erosional processes in the mountains. In Landforms of New Zealand, J.M. Soons and M.J. Selby (eds), 67–79. Auckland: Longman Paul.Google Scholar
  117. Patton, P.C. 1981. Evolution of the spur and gully topography on the Valles Marineris wall scarps. Reports of the planetary geology program 1981. National Aeronautics and Space Administration Technical Memorandum 84211, 324–5.Google Scholar
  118. Peel, R.F. 1941. Denudational landforms of the central Libyan Desert. Journal of Geomorphology 4, 3–23.Google Scholar
  119. Peev, C.D. 1966. Geomorphic activity of snow avalanches. International Association of Scientific Hydrology Publication 69, 357–68.Google Scholar
  120. Perla, R., T.T. Cheng and D.M. McClung 1980. A two-parameter model of snow-avalanche motion. Journal of Glaciology 26, 197–207.Google Scholar
  121. Pollack, H.N. 1969. A numerical model of Grand Canyon. Four Corners Geological Society, Geology and Natural History of the Grand Canyon Region, 61–2.Google Scholar
  122. Pouyllau, M. and M. Seurin 1985. Pseudo-karst dans des roches greso-quartzitiques de la formation Roraima. Karstologia 5, 45–52.Google Scholar
  123. Rapp, A. 1960a. Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 73–200.Google Scholar
  124. Rapp, A. 1960b. Talus slopes and mountain walls at Templefjorden, Spitzbergen. Norsk Polarinstitutt Scrifter 119, 96 pp.Google Scholar
  125. Reiche, P. 1937. The Toreva Block, a distinctive landform type. Journal of Geology 45, 538–48.Google Scholar
  126. Richter, E. 1901. Geomorphologische Untersuchungen in den Hochalpen. Dr. A. Petermann’s Mitteilungen aus Justus Perthes’ geographischer Ansalt, Ergänzungsheft 132.Google Scholar
  127. Rudberg, S. 1986. Present-day geomorphological processes in Prins Oscars Land, Svalvard. Geografiska Annaler 68A, 41–63.Google Scholar
  128. Sancho, C., M. Gutierrez, J.L. Pena and F. Burillo 1988. A quantitative approach to scarp retreat starting from triangular slope facets, central Ebro Basin, Spain. Catena Supplement 13, 139–46.Google Scholar
  129. Scheidegger, A.E. 1991. Theoretical geomorphology (3rd edn). Berlin: Springer.Google Scholar
  130. Schiewiller, T. and K. Hunter 1983. Avalanche dynamics. Review of experiments and theoretical models of flow and powder-snow avalanches. Journal of Glaciology 29, 283–5.Google Scholar
  131. Schipull, K. 1980. Die Cedar Mesa – Schichtstufe aud dem Colorado Plateau – ein Beispiel für die Morphodynamik arider Schichtstufen. Zeitschrift für Geomorphologie 24, 318–31.Google Scholar
  132. Schmidt, K.-H. 1980. Eine neue Metode zur Ermittlung von Stufenruckwanderungsraten, dargestellt am Beispiel der Black Mesa Schichtstufen, Colorado Plateau, USA. Zeitschrift für Geomorphologie 24, 180–91.Google Scholar
  133. Schmidt, K.-H. 1987. Factors influencing structural land-form dynamics on the Colorado Plateau – about the necessity of calibrating theoretical models by empirical data. Catena Supplement 10, 51–66.Google Scholar
  134. Schmidt, K.-H. 1988. Rates of scarp retreat: a means of dating neotectonic activity. In The Atlas system of Morocco – studies on its geodynamic evolution, V.H. Jacobshagen (ed), 445–62. Berlin: Lecture Notes in Earth Science 15.Google Scholar
  135. Schmidt, K.-H. 1989a. Talus and pediment flatirons – erosional and depositional features of dryland cuesta scarps. Catena Supplement 14, 107–18.Google Scholar
  136. Schmidt, K.-H. 1989b. The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, USA. Earth Surface Processes and Landforms 14, 93–105.Google Scholar
  137. Schumm, S.A. and R.J. Chorley 1964. The fall of threatening rock. American Journal of Science 262, 1041–54.Google Scholar
  138. Schumm, S.A. and R.J. Chorley 1966. Talus weathering and scarp recession in the Colorado Plateau. Zeitschrift für Geomorphologie 10, 11–36.Google Scholar
  139. Selby, M.J. 1977. Bornhardts of the Namib Desert. Zeitschrift für Geomorphologie 21, 1–13.Google Scholar
  140. Selby, M.J. 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie 24, 31–51.Google Scholar
  141. Selby, M.J. 1982a. Form and origin of some bornhardts of the Namib Desert. Zeitschrift für Geomorphologie 26, 1–15.Google Scholar
  142. Selby, M.J. 1982b. Rock mass strength and the form of some inselbergs in the Central Namib Desert. Earth Surface Processes and Landforms 7, 489–97.Google Scholar
  143. Selby, M.J. 1982c. Controls on the stability and inclinations of hillslopes formed on hard rock. Earth Surface Processes and Landforms 7, 449–67.Google Scholar
  144. Selby, M.J. 1982d. Hillslope materials and processes. Oxford: Oxford University Press.Google Scholar
  145. Selby, M.J. 1985. Earth’s changing surface. Oxford: Clarendon Press.Google Scholar
  146. Selby, M.J. 1987. Rock slopes. In Slope stability: geotechnical engineering and geomorphology, M.G. Anderson and K.S. Richards (eds), 475–504. Chichester: Wiley.Google Scholar
  147. Selby, M.J., P. Augustinus, V.G. Moon and R.J. Stevenson 1988. Slopes on strong rock masses: modelling and influences of stress distributions and geomechanical properties. In Modelling geomorphological systems, M.G. Anderson (ed), 341–74. Chichester: Wiley.Google Scholar
  148. Sharp, R.P. and M.C. Malin 1975. Channels on Mars. Bulletin of the Geological Society of America 86, 593–609.Google Scholar
  149. Slatyer, R.O. 1962. Climate of the Alice Springs area. Land Research Series 6, CSIRO, Melbourne, 109–28.Google Scholar
  150. Stille, H. 1924. Grundfragen der vergleichenden Tektonic. Berlin: Gebruder Borntraeger.Google Scholar
  151. Strahler, A.N. 1940. Landslides of the Vermillion and Echo Cliffs, northern Arizona. Journal of Geomorphology 3, 285–300.Google Scholar
  152. Sturgul, J.R., A.E. Scheidegger and Z. Grinshpan 1976. Finite-element model of a mountain massif. Geology 4, 439–42.Google Scholar
  153. Suess, E. 1904–1924. The face of the Earth (translated by H.B.C. Sollas), 5 vols. Oxford: Clarendon Press. (German edition 1885–1909, Vienna: Tempsky.)Google Scholar
  154. Terzaghi, K. 1962. Stability of steep slopes in hard unweathered rock. Geotechnique 12, 251–70.Google Scholar
  155. Thomas, M.F. 1989a. The role of etch processes in land-form development: I. etching concepts and their applications. Zeitschrift für Geomorphologie 33, 129–42.Google Scholar
  156. Thomas, M.F. 1989b. The role of etch processes in land-form development: II. etching and the formation of relief. Zeitschrift für Geomorphologie 33, 257–74.Google Scholar
  157. Twidale, C.R. 1978. On the origin of Ayres Rock, central Australia. Zeitschrift für Geomorphologie Supplement Band 31, 177–206.Google Scholar
  158. Twidale, C.R. 1981. Granite Inselbergs. Geographical Journal 147, 54–71.Google Scholar
  159. Twidale, C.R. 1982a. The evolution of bornhardts. American Scientist 70, 268–76.Google Scholar
  160. Twidale, C.R. 1982b. Granite landforms. Amsterdam: Elsevier.Google Scholar
  161. Twidale, C.R. 1990. The origin and implications of some erosional landforms. Journal of Geology 98, 343–64.Google Scholar
  162. Voight, B. and B.H.P. St Pierre 1974. Stress history and rock stress. Proceedings of the Third Congress of the International Society for Rock Mechanics, Denver 2, 580–2.Google Scholar
  163. Watson, R.A. and H.E. Wright, Jr, 1963. Landslides on the east flank of the Chuska Mountains, northwestern New Mexico. American Journal of Science 261, 525–48.Google Scholar
  164. Wayland, E.J. 1933. Peneplains and some other erosional platforms. Annual Report and Bulletin of the Protectorate of Uganda Geological Survey and Department of Mines, Note 1, 77–9.Google Scholar
  165. Willis, B. 1936. East African plateaus and rift valleys. Studies in comparative seismology. Washington, DC: Carnegie Institution.Google Scholar
  166. Wyrwoll, K.H. 1979. Late Quaternary climates of Western Australia: evidence and mechanisms. Journal of the Royal Society of Western Australia 62, 129–42.Google Scholar
  167. Yair, A. and R. Gerson 1974. Mode and rate of escarpment retreat in an extremely arid environment (Sharm el Sheikh, southern Sinai Peninsula). Zeitschrift für Geomorphologie 21, 106–21.Google Scholar
  168. Young, R.W. 1986. Tower karst in sandstone Bungle Bungle massif, northwestern Australia. Zeitschrift für Geomorphologie 30, 189–202.Google Scholar
  169. Yatsu, E. 1988. The nature of weathering: an introduction. Tokyo: Sozosha.Google Scholar
  170. Young, A.R.M. 1987a. Salt as an agent in cavernous weathering. Geology 15, 962–6.Google Scholar
  171. Young, R.W. 1987b. Sandstone landforms of the tropical East Kimberley region, northwestern Australia. Journal of Geology 95, 205–18.Google Scholar
  172. Young, R.W. 1988. Quartz etching and sandstone karst: examples from the East Kimberleys, northwestern Australia. Zeitschrift für Geomorphologie 32, 409–23.Google Scholar
  173. Yu, Y.S. and D.F. Coates 1970. Analysis of rock slopes using the finite element method. Department of Energy, Mines and Resources, Mines Branch, Mining Research Centre, Research Report R229, Ottawa.Google Scholar
  174. Zaruba, Q. and V. Mencl 1982. Landslides and their control (2nd edn). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alan D. Howard
    • 1
  • Michael J. Selby
    • 2
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Earth SciencesUniversity of WaikatoHamiltonNew Zealand

Personalised recommendations