Rock Varnish and its Use to Study Climatic Change in Geomorphic Settings

  • Ronald I. Dorn

The dusky brown to black coating of rock varnish dominates bare rock surfaces of many desert landforms (Oberlander, 1994). Thicknesses less than even 0.020 mm (or 20 micrometres, μ m) are enough to darken light-colored rock types (Fig. 21.1). The gradual pace of change on many desert landforms permits the slow accretion of rock varnish at rates of a few micrometres per thousand years (Dorn, 1998; Liu and Broecker, 2000). Just about any rock type will accumulate varnish, in so long as rock-surface erosion is slow enough to permit varnish accretion.


Late Pleistocene Sonoran Desert Mojave Desert Study Climatic Change Earth Surface Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, A. D., Parsons, A. J., and Hirsch, P. J., 1985. Hillslope gradient-particle size relations: Evidence of the formation of debris slopes by hydraulic processes in the Mojave Desert. Journal of Geology 93: 347–357.Google Scholar
  2. Allen, C., Probst, L. W., Flood, B. E., Longazo, T. G., Scheble, R. T., and Westall, F., 2004. Meridiani Planum hematite deposit and the search for evidence of life on Mars – iron mineralization of microorganisms in rock varnish. Icarus 171: 20–30.CrossRefGoogle Scholar
  3. Amit, R., Gerson, R., and Yaalon, D. H., 1993. Stages and rate of the gravel shattering process by salts in desert Reg soils. Geoderma 57: 295–324.CrossRefGoogle Scholar
  4. Ballantyne, C. K., and Stone, J. O., 2004. The Beinn Alligin rock avalanche, NW Scotland: cosmogenic Be-10 dating, interpretation and significance. Holocene 14: 448–453.CrossRefGoogle Scholar
  5. Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., and Johnson, S., 1999. The North Atlantic’s 1–2 kyr climate rhythm, relation to Heinrich events, Dansgaard/Oeschger cycles and the little ice age. In: Mechanisms of Global Climate Change at Millennial Time Scales, P. U. Clark, R. S. Webb and L. D. Keigwin (eds.), American Geophysical Union, Washington, D.C., pp. 35–58.Google Scholar
  6. Broecker, W. S., and Liu, T., 2001. Rock varnish: recorder of desert wetness? GSA Today 11(8): 4–10.CrossRefGoogle Scholar
  7. Bull, W. B., 1991. Geomorphic responses to climatic change. Oxford University Press, Oxford, 326pp.Google Scholar
  8. Colman, S. M., 1982. Chemical weathering of basalts and andesites: evidence from weathering rinds. U.S. Geological Survey Professional Paper 1246: 51.Google Scholar
  9. Cremaschi, M., 1992. Genesi e significato paleoambientale della patina del deserto e suo ruolo nello studio dell’arte rupestre. Il caso del Fezzan meridionale (Sahara Libico). In: Arte e Culture del Sahara Preistorico, M. Lupaciollu (ed.), Quasar, Rome, pp. 77–87.Google Scholar
  10. Cremaschi, M., 1996. The desert varnish in the Messak Sattafet (Fezzan, Libryan Sahara), age, archaeological context and paleo-environmental implication. Geoarchaeology 11: 393–421.CrossRefGoogle Scholar
  11. Davis, W. M., 1905. The geographical cycle in arid climate. Journal of Geology 13: 381–407.Google Scholar
  12. De Geer, G., 1930. The Finiglacial Subepoch in Sweden, Finland and the New World. Geografiska Annaler 12: 101–111.CrossRefGoogle Scholar
  13. Diaz, T. A., Bailley, T. L., and Orndorff, R. L., 2002. SEM analysis of vertical and lateral variations in desert varnish chemistry from the Lahontan Mountains, Nevada. Geological Society of America Abstracts with ProgramsMay 7–9 Meeting: <///>.Google Scholar
  14. Dixon, J. C., 1994. Aridic soils, patterned ground, and desert pavements. In: Geomorphology of Desert Environments, A. D. Abrahams and A. J. Parsons (eds.), Chapman, London, pp. 64–81.Google Scholar
  15. Dorn, R. I., 1984. Cause and implications of rock varnish microchemical laminations. Nature 310: 767–770.CrossRefGoogle Scholar
  16. Dorn, R. I., 1986. Rock varnish as an indicator of aeolian environmental change. In: Aeolian Geomorphology, W. G. Nickling (ed.), Allen & Unwin, London, pp. 291–307.Google Scholar
  17. Dorn, R. I., 1990. Quaternary alkalinity fluctuations recorded in rock varnish microlaminations on western U.S.A. volcanics. Palaeogeography, Palaeoclimatology, Palaeoecology 76: 291–310.CrossRefGoogle Scholar
  18. Dorn, R. I., 1995a. Alterations of ventifact surfaces at the glacier/desert interface. In: Desert aeolian processes, V. Tchakerian (ed.), Chapman & Hall, London, pp. 199–217.Google Scholar
  19. Dorn, R. I., 1995b. Digital processing of back-scatter electron imagery: A microscopic approach to quantifying chemical weathering. Geological Society of America Bulletin 107: 725–741.CrossRefGoogle Scholar
  20. Dorn, R. I., 1998. Rock coatings. Elsevier, Amsterdam, 429p.Google Scholar
  21. Dorn, R. I., 2007. Rock varnish. In: Geochemical Sediments and Landscapes, D. J. Nash and S. J. McLaren (eds.), Blackwell, London, pp. in press – Chapter 8, pp. 246–297.CrossRefGoogle Scholar
  22. Dorn, R. I., and DeNiro, M. J., 1985. Stable carbon isotope ratios of rock varnish organic matter: A new paleoenvironmental indicator. Science 227: 1472–1474.CrossRefGoogle Scholar
  23. Dorn, R. I., and Dickinson, W. R., 1989. First paleoenvironmental interpretation of a pre-Quaternary rock varnish site, Davidson Canyon, south Arizona. Geology 17: 1029–1031.CrossRefGoogle Scholar
  24. Dorn, R. I., and Oberlander, T. M., 1981. Microbial origin of desert varnish. Science 213: 1245–1247.CrossRefGoogle Scholar
  25. Dorn, R. I., and Oberlander, T. M., 1982. Rock varnish. Progress in Physical Geography 6: 317–367.CrossRefGoogle Scholar
  26. Douglass, J., Dorn, R. I., and Gootee, B., 2005. A large landslide on the urban fringe of metropolitan Phoenix, Arizona. Geomorphology 65: 321–336.CrossRefGoogle Scholar
  27. Dragovich, D., 1993. Distribution and chemical composition of microcolonial fungi and rock coatings from arid Australia. Physical Geography 14: 323–341.Google Scholar
  28. Drake, N. A., Heydeman, M. T., and White, K. H., 1993. Distribution and formation of rock varnish in southern Tunisia. Earth Surface Processes and Landforms 18: 31–41.CrossRefGoogle Scholar
  29. Eckis, R., 1928. Alluvial fans in the Cucamonga district, southern California. Journal of Geology 36: 111–141.Google Scholar
  30. Eppard, M., Krumbein, W. E., Koch, C., Rhiel, E., Staley, J. T., and Stackebrandt, E., 1996. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Archives of Microbiology 166: 12–22.CrossRefGoogle Scholar
  31. Etienne, S., 2002. The role of biological weathering in periglacial areas: a study of weathering rinds in south Iceland. Geomorphology 47: 75–86.CrossRefGoogle Scholar
  32. Gordon, S. J., and Dorn, R. I., 2005. In situ weathering rind erosion. Geomorphology 67: 97–113.CrossRefGoogle Scholar
  33. Gossens, D., 2005. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces. Earth Surface Processes and Landforms 30: 443–460.CrossRefGoogle Scholar
  34. Harvey, A. M., and Wells, S. G., 1994. Late Pleistocene and Holocene changes in hillslope sediment supply to alluvial fan systems: Zzyzx, California. In: Environmental Change in Drylands: Biogeographical and Geomorphological Perspectives, A. C. Millington and K. Pye (eds.), Wiley & Sons, London, pp. 67–84.Google Scholar
  35. Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29: 143–152.CrossRefGoogle Scholar
  36. Hermanns, R. L., Niedermann, S., Garcia, A. V., Gomez, J. S., and Strecker, M. R., 2001. Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29: 619–622.CrossRefGoogle Scholar
  37. Hirsch, P., 1974. The budding bacteria. Annual Review Microbiology 28: 391–444.CrossRefGoogle Scholar
  38. Hooke, R. L., and Dorn, R. I., 1992. Segmentation of alluvial fans in Death Valley, California: New insights from surface-exposure dating and laboratory modelling. Earth Surface Processes and Landforms 17: 557–574.CrossRefGoogle Scholar
  39. Hungate, B., Danin, A., Pellerin, N. B., Stemmler, J., Kjellander, P., Adams, J. B., and Staley, J. T., 1987. Characterization of manganese-oxidizing (MnII–>MnIV) bacteria from Negev Desert rock varnish: implications in desert varnish formation. Canadian Journal Microbiology 33: 939–943.CrossRefGoogle Scholar
  40. Huntington, E., 1907. Some characteristics of the glacial period in non-glaciated regions. Geological Society of America Bulletin 18: 351–388.Google Scholar
  41. Jones, C. E., 1991. Characteristics and origin of rock varnish from the hyperarid coastal deserts of northern Peru. Quaternary Research 35: 116–129.CrossRefGoogle Scholar
  42. Julien, A. A., 1901. A study of the structure of fulgurites. Journal of Geology 9: 673–693.Google Scholar
  43. Karfunkel, J., Addad, J., Banko, A. G., Hadrian, W., and Hoover, D. B., 2001. Electromechanical disintegration - an important weathering process. Zeitschrift fur Geomorphologie 45: 345–357.Google Scholar
  44. Krinsley, D., 1998. Models of rock varnish formation constrained by high resolution transmission electron microscopy. Sedimentology 45: 711–725.CrossRefGoogle Scholar
  45. Krinsley, D. H., Dorn, R. I., and Tovey, N. K., 1995. Nanometer-scale layering in rock varnish: implications for genesis and paleoenvironmental interpretation. Journal of Geology 103: 106–113.Google Scholar
  46. Krumbein, W. E., and Jens, K., 1981. Biogenic rock varnishes of the Negev Desert (Israel): An ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50: 25–38.CrossRefGoogle Scholar
  47. Kuhlman, K. R., Allenbach, L. B., Ball, C. L., Fusco, W. G., La_Duc, M. T., Kuhlman, G. M., Anderson, R. C., Stuecker, T., Erickson, I. K., Benardini, J., and Crawford, R. L., 2005. Enumeration, isolation, and characterization of ultraviolet (UV-C) resistant bacteria from rock varnish in the Whipple Mountains, California. Icarus 174: 585–595.CrossRefGoogle Scholar
  48. Kuhlman, K. R., Fusco, W. G., Duc, M. T. L., Allenbach, L. B., Ball, C. L., Kuhlman, G. M., Anderson, R. C., Erickson, K., Stuecker, T., Benardini, J., Strap, J. L., and Crawford, R. L., 2006. Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Applied and Environmental Microbiology 72: 1708–1715.CrossRefGoogle Scholar
  49. Lee, M. R., and Bland, P. A., 2003. Dating climatic change in hot deserts using desert varnish on meteorite finds. Earth and Planetary Science Letters 206: 187–198.CrossRefGoogle Scholar
  50. Libby, C. A., 1986. Fulgurite in the Sierra Nevada. California Geology 39(11): 262.Google Scholar
  51. Liu, T., 1994. Visual microlaminations in rock varnish: a new paleoenvironmental and geomorphic tool in drylands, Ph.D. thesis, 173 pp., Arizona State University, Tempe.Google Scholar
  52. Liu, T., 2003. Blind testing of rock varnish microstratigraphy as a chronometric indicator: results on late Quaternary lava flows in the Mojave Desert, California. Geomorphology 53: 209–234.CrossRefGoogle Scholar
  53. Liu, T., 2008. VML Dating Lab, <accessed November 14, 2008=.
  54. Liu, T., and Broecker, W. S., 2000. How fast does rock varnish grow? Geology 28: 183–186.CrossRefGoogle Scholar
  55. Liu, T., and Broecker, W., 2007. Holocene rock varnish microstratigraphy and its chronometric application in drylands of western USA. Geomorphology 84: 1–21.CrossRefGoogle Scholar
  56. Liu, T., and Broecker, W. S., 2008a. Rock varnish microlamination dating of late Quaternary geomorphic features in the drylands of western USA. Geomorphology 93: 501–523.CrossRefGoogle Scholar
  57. Liu, T., and Broecker, W. S., 2008b. Rock varnish evidence for latest Pleistocene millennial-scale wet events in the drylands of western United States. Geology 36: 403–406.CrossRefGoogle Scholar
  58. Liu, T., Broecker, W. S., Bell, J. W., and Mandeville, C., 2000. Terminal Pleistocene wet event recorded in rock varnish from the Las Vegas Valley, southern Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 161: 423–433.CrossRefGoogle Scholar
  59. Liu, T., and Dorn, R. I., 1996. Understanding spatial variability in environmental changes in drylands with rock varnish microlaminations. Annals of the Association of American Geographers 86: 187–212.CrossRefGoogle Scholar
  60. Mabbutt, J. A., 1979. Pavements and patterned ground in the Australian stony deserts. Stuttgarter Geographische Studien 93: 107–123.Google Scholar
  61. Marchant, D. R., Schisher, C., Lux, D., West, D., and Denton, G., 1993. Pliocene paleoclimate and East Antarctic ice-sheet history from surficial ash deposits. Science 260: 667–670.CrossRefGoogle Scholar
  62. Marston, R. A., 2003. Editorial note. Geomorphology 53: 197.CrossRefGoogle Scholar
  63. McAuliffe, J. R., and McDonald, E. V., 2006. Holocene environmental change and vegetation contraction in the Sonoran Desert. Quaternary Research 65: 204–215.CrossRefGoogle Scholar
  64. McAullife, J. R., 1994. Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert Bajadas. Ecological Monographs 64(2): 111–148.CrossRefGoogle Scholar
  65. McKeown, D. A., and Post, J. E., 2001. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. American Mineralogist 86: 701–713.Google Scholar
  66. Nagy, B., Nagy, L. A., Rigali, M. J., Jones, W. D., Krinsley, D. H., and Sinclair, N., 1991. Rock varnish in the Sonoran Desert: microbiologically mediated accumulation of manganiferous sediments. Sedimentology 38: 1153–1171.CrossRefGoogle Scholar
  67. Nishiizumi, K., Kohl, C., Arnold, J., Dorn, R., Klein, J., Fink, D., Middleton, R., and Lal, D., 1993. Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes. Earth Surface Processes and Landforms 18: 407–425.CrossRefGoogle Scholar
  68. Oberlander, T. M., 1972. Morphogenesis of granite boulder slopes in the Mojave Desert, California. Journal of Geology 80: 1–20.Google Scholar
  69. Oberlander, T. M., 1974. Landscape inheritance and the pediment problem in the Mojave Desert of Southern California. American Journal of Science 274: 849–875.Google Scholar
  70. Oberlander, T. M., 1989. Slope and pediment systems. In: Arid Zone Geomorphology, D. S. G. Thomas (ed.), Belhaven Press, London, pp. 56–84.Google Scholar
  71. Oberlander, T. M., 1994. Rock varnish in deserts. In: Geomorphology of Desert Environments, A. Abrahams and A. Parsons (eds.), Chapman and Hall, London, pp. 106–119.Google Scholar
  72. Palmer, F. E., Staley, J. T., Murray, R. G. E., Counsell, T., and Adams, J. B., 1985. Identification of manganese-oxidizing bacteria from desert varnish. Geomicrobiology Journal 4: 343–360.CrossRefGoogle Scholar
  73. Parsons, A. J., and Abrahams, A. D., 1987. Gradient-particle size relations on quartz monzonite debris slopes in the Mojave Desert. Journal of Geology 1987: 423–452.CrossRefGoogle Scholar
  74. Perry, R. S., and Adams, J., 1978. Desert varnish: evidence of cyclic deposition of manganese. Nature 276: 489–491.CrossRefGoogle Scholar
  75. Perry, R. S., Dodsworth, J., Staley, J. T., and Gillespie, A., 2002. Molecular analyses of microbial communities in rock coatings and soils from Death Valley, California. Astrobiology 2(4): 539.Google Scholar
  76. Perry, R. S., Engel, M., Botta, O., and Staley, J. T., 2003. Amino acid analyses of desert varnish from the Sonoran and Mojave deserts. Geomicrobiology Journal 20: 427–438.CrossRefGoogle Scholar
  77. Perry, R. S., and Kolb, V. M., 2003. Biological and organic constituents of desert varnish: Review and new hypotheses. In: Instruments, methods, and missions for Astrobiology VII, vol. 5163, R. B. Hoover and A. Y. Rozanov (eds.), SPIE, Bellingham, pp. 202–217.Google Scholar
  78. Perry, R. S., Lynne, B. Y., Sephton, M. A., Kolb, V. M., Perry, C. C., and Staley, J. T., 2006. Baking black opal in the desert sun: The importance of silica in desert varnish. Geology 34: 737–540.CrossRefGoogle Scholar
  79. Peterson, F., 1981. Landforms of the Basin and Range Province, defined for soil survey. Nevada Agricultural Experiment Station Technical Bulletin 28: 52.Google Scholar
  80. Peterson, F. F., Bell, J. W., Dorn, R. I., Ramelli, A. R., and Ku, T. L., 1995. Late Quaternary geomorphology and soils in Crater Flat, Yucca Mountain area, southern Nevada. Geological Society of America Bulletin 107: 379–395.CrossRefGoogle Scholar
  81. Phillips, F. M., 2003. Cosmogenic 36Cl ages of Quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53: 199–208.CrossRefGoogle Scholar
  82. Phillips, F. M., Zreda, M. G., Plummer, M. A., Benson, L. V., Elmore, D., and Sharma, P., 1996. Chronology for fluctuations in Late Pleistocene Sierra Nevada glaciers and lakes. Science 274: 749–751.CrossRefGoogle Scholar
  83. Pinter, N., Keller, E. A., and West, R. B., 1994. Relative dating of terraces of the Owens River, Northern Owens Valley, California, and correlation with moraines of the Sierra Nevada. Quaternary Research 42: 266–276.CrossRefGoogle Scholar
  84. Potter, R. M., 1979. The tetravalent manganese oxides: clarification of their structural variations and relationships and characterization of their occurrence in the terrestrial weathering environment as desert varnish and other manganese oxides. Ph.D. thesis, California Institute of Technology, Pasadena, 245 pp.Google Scholar
  85. Potter, R. M., and Rossman, G. R., 1977. Desert varnish: The importance of clay minerals. Science 196: 1446–1448.CrossRefGoogle Scholar
  86. Potter, R. M., and Rossman, G. R., 1979a. The manganese- and iron-oxide mineralogy of desert varnish. Chemical Geology 25: 79–94.CrossRefGoogle Scholar
  87. Potter, R. M., and Rossman, G. R., 1979b. Mineralogy of manganese dendrites and coatings. American Mineralogist 64: 1219–1226.Google Scholar
  88. Potter, R. M., and Rossman, G. R., 1979c. The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. American Mineralogist 64: 1199–1218.Google Scholar
  89. Probst, L. W., Allen, C. C., Thomas-Keprta, K. L., Clemett, S. J., Longazo, T. G., Nelman-Gonzalez, M. A., and Sams, C., 2002. Desert varnish - preservation of biofabrics and implications for Mars. Lunar and Planetary Science 33: 1764.pdf.Google Scholar
  90. Reheis, M. C., Slate, J. L., Throckmorton, C. K., McGeehin, J. P., SarnaWojcicki, A. M., and Dengler, L., 1996. Late Qaternary sedimentation on the Leidy Creek fan, Nevada-California: Geomorphic responses to climate change. Basin Research 8: 279–299.CrossRefGoogle Scholar
  91. Reynolds, S. J., 1985. Geology of the South Mountains, central Arizona. Arizona Bureau of Geology and Mineral Technology Bulletin 195: 1–61.Google Scholar
  92. Taylor-George, S., Palmer, F. E., Staley, J. T., Borns, D. J., Curtiss, B., and Adams, J. B., 1983. Fungi and bacteria involved in desert varnish formation. Microbial Ecology 9: 227–245.CrossRefGoogle Scholar
  93. Thiagarajan, N., and Lee, C. A., 2004. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth and Planetary Science Letters 224: 131–141.CrossRefGoogle Scholar
  94. Twidale, C. R., 1982. Granite landforms. Amsterdam, Elsevier, pp. 312.Google Scholar
  95. Van Devender, T. R., Thompson, R. S., and Betancourt, J. L., 1987. Vegetation history of the deserts of southwestern North America; the nature and timing of the late Wisconsin-Holocene transition. Geological Society of America, Boulder, Colo, pp. 323–352.Google Scholar
  96. Villa, N., Dorn, R. I., and Clark, J., 1995. Fine material in rock fractures: aeolian dust or weathering? In: Desert aeolian processes, V. Tchakerian (ed.), Chapman & Hall, London, pp. 219–231.Google Scholar
  97. Wainwright, J., Parsons, A. J., and Abrahams, A. D., 1999. Field and computer simulation experiments on the formation of desert pavement. Earth Surface Processes and Landforms 24: 1025–1037.CrossRefGoogle Scholar
  98. Zhou, B. G., Liu, T., and Zhang, Y. M., 2000. Rock varnish microlaminations from northern Tianshan, Xinjiang and their paleoclimatic implications. Chinese Science Bulletin 45: 372–376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ronald I. Dorn
    • 1
  1. 1.School of Geographical SciencesArizona State UniversityTempeUSA

Personalised recommendations