Global Deserts and Their Geomorphological Diversity

  • Andrew S. Goudie

The world’s deserts show great diversity in terms of both their landscapes and their geomorphological processes (Goudie, 2002). Climate is one major control of their character. Thus aridity determines the extent to which different types of salt can accumulate, but above all it determines the nature of the vegetation cover, which in turn controls the rate of operation of slope, fluvial and aeolian processes. For example, dunes will not for the most part move if is there is a substantial vegetation cover, nor will dust storms be generated. Deserts such as the Atacama, Libyan and Namib are hyper-arid, whereas those of the Thar, Kalahari and Australia are considerably moister. Some deserts are high energy wind environments, while others are not, and this helps to explain variations in dune forms, and the presence or absence of wind erosion features such as yardangs. Some have unidirectional wind regimes, whereas others are more variable.

Keywords

Depression Ozone Shale Dolomite Gypsum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allchin B, Goudie A.S. and Hegde K.T.M. (1977). The Palaeogeography and Prehistory of the Great Indian Desert. London: Academic Press.Google Scholar
  2. Alpers C.N. and Brimhall G.H. (1988). Middle Miocene climatic change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Bulletin Geological Society of America 100, 1640–56.CrossRefGoogle Scholar
  3. Aref M.A., El-Khoriby E. and Hamdan M.A. (2002). The role of salt weathering in the origin of the Qattara Depression, Western Desert, Egypt. Geomorphology 45, 403–414.CrossRefGoogle Scholar
  4. Bagnold R.A. (1941). The Physics of Blown Sand and Desert Dunes. London, Methuen.Google Scholar
  5. Bohlke J.K., Ericksen G.E. and Revesz K. (1997). Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. Chemical Geology 136, 135–152.CrossRefGoogle Scholar
  6. Bourke M.C. and Pickup G. (1999). Fluvial form variability in arid central Australia. In: A.J. Miller and A. Gupta (eds.) Varieties of Fluvial Form. Chichester: Wiley, pp.249–271.Google Scholar
  7. Bowman I. (1926). Desert Trails of Atacama. New York: American Geographical Society.Google Scholar
  8. Busche D. (1998). Die Zentrale Sahara. Gotha: Justus Perthes verlag.Google Scholar
  9. Clarke J.D.A. (2006). Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101–114.CrossRefGoogle Scholar
  10. Ding Z.L. and Yang S.L. (2000). C3/C4 vegetation evolution over the last 7.0 Myr in the Chinese Loess Plateau: evidence from pedogenic carbonate δ13C. Palaeogeography, Palaeoclimatology, Palaeoecology 160, 292–299.CrossRefGoogle Scholar
  11. Eckardt F.D. and Spiro B. (1999). The origin of sulphur in gypsum and dissolved sulphate in the Central Namib Desert, Namibia. Sedimentary Geology 123, 255–273.CrossRefGoogle Scholar
  12. Eckardt F.D., Drake N., Goudie A.S., White K. and Viles H. (2001). The role of playas in pedogenic gypsum crust formation in the Central Namib Desert: a theoretical model. Earth Surface Processes and Landforms 26, 1177–1193.CrossRefGoogle Scholar
  13. Edgell H.S. (2006). Arabian Deserts. Nature, origin and evolution. Dordrecht: Springer.Google Scholar
  14. Embabi N.S. (2004). The geomorphology of Egypt. Vol.1, The Nile Valley and the Western Desert. Cairo: Egyptian Geographical Society.Google Scholar
  15. Ericksen G.E. (1981). Geology and origin of the Chilean nitrate deposits. United States Geological Survey Professional Paper 1188, 37pp.Google Scholar
  16. Fluteau F., Ramstein G. and Besse J. (1999). Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. Journal of Geophysical Research 104 (D10), 11995–12018.CrossRefGoogle Scholar
  17. Gale S.J. (1992). Long-term landscape evolution in Australia. Earth Surface Processes and Landforms 17, 323–43.CrossRefGoogle Scholar
  18. Gilbert G.K. (1877). Report on the Geology of the Henry Mountains. US Geographical and Geological Survey.Google Scholar
  19. Goudie A.S. (2002). Great Warm Deserts of the World. Landscapes and evolution. Oxford: Oxford University Press.Google Scholar
  20. Goudie A.S. (2005). The drainage of Africa since the Cretaceous. Geomorphology 67, 437–456.CrossRefGoogle Scholar
  21. Goudie A.S. (2007). Mega-yardangs: a global analysis. Geography Compass 1, 65–81.CrossRefGoogle Scholar
  22. Goudie A.S. and Eckardt F. (1999). The evolution of the morphological framework of the Central Namib Desert, Namibia, since the early Cretaceous. Geografiska Annaler 81A, 443–458.CrossRefGoogle Scholar
  23. Goudie A.S. and Sperling C.H.B. (1977). Long distance transport of Foraminiferal tests by wind in the Thar Desert, northwest India. Journal of Sedimentary Petrology 47, 630–33.Google Scholar
  24. Goudie A.S. and Thomas D.S.G. (1985). Pans in southern Africa with particular reference to South Africa and Zimbabwe. Zeitschrift fur Geomorphologie 29, 1–19.Google Scholar
  25. Goudie A.S., Allchin B. and Hegde K.T.M. (1973). The former extensions of the Great Indian Sand Desert. Geographical Journal 139, 243–57.CrossRefGoogle Scholar
  26. Goudie A.S., Viles H.A. and Parker A.G. (1997). Monitoring of rapid salt weathering in the central Namib using limestone blocks. Journal of Arid Environments 37, 581–598.CrossRefGoogle Scholar
  27. Goudie A.S., Wright E. and Viles H.A. (2002). The roles of salt (sodium nitrate) and fog in weathering: a loaboratory simulation of conditions in the northern Atacama Desert, Chile. Catena 48, 255–266.CrossRefGoogle Scholar
  28. Grove A.T. (1968). Landforms and climatic change in the Kalahari and Ngamiland. Geographical Journal 135, 191–212.CrossRefGoogle Scholar
  29. Halimov M. and Fezer, F. (1989). Eight yardang types in Central asia. Zeitschrift für Geomorphologie 33, 205–217.Google Scholar
  30. Harrison S.P. and Dodson J. (1993). Climates of Australia and New Guinea since 18,000 yr B.P., in H.E. Wright, J.E. Kutzbach, T. Webb, W.F. Ruddiman, F.A. Street-Perrott and P.J. Bartlein (eds.) Global Climates Since the Last Glacial Maximum. Minneapolis: University of Minnesota Press, pp.265–293.Google Scholar
  31. Hedin S. (1903). Central Asia and Tibet. New York: Scribners.Google Scholar
  32. Hoelzmann P., Keding B., Berke H., Kröpelin S. and Kruse H.-J. (2001). Environmental change and archaeology: lake evolution and human occupation in the Eastern Sahara during the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology 169, 193–217.CrossRefGoogle Scholar
  33. Issawi B. and McCauley J.F. (1992). The Cenozoic Rivers of Egypt: the Nile problem. In: The Followers of Horus (eds. B. Adams and R. Friedman), pp.1–18. Oxford: Oxbow Press.Google Scholar
  34. Jerram D.A., Mountney N.P., Howell J.A., Long D. and Stollhofen, H. (2000). Death of a sand sea: an active aeolian erg systematically buried by the Etendeka flood basalts of NW Namibia. Journal of the Geological Society, London, 157, 513–516.CrossRefGoogle Scholar
  35. Kar A. (1993). Aeolian processes and bedforms in the Thar Desert. Journal of Arid Environments 25, 83–96.CrossRefGoogle Scholar
  36. Kastanja, M.M., Diekmann, B. and Henrich, R. (2006). Controls on terrigenous deposition in the incipient Benguela upwelling system during the middle to the late Miocene (ODP Sites 1085 and 1087). Palaeogeography, Palaeoclimatology, Palaeoecology 241, 515–530.CrossRefGoogle Scholar
  37. Kes A.S. and Fedorovich B.A. (1976). Process of forming of aeolian dust in space and time. 23rd International Geographical Congress, Section 1, 174–77.Google Scholar
  38. Juyal N., Chamyal, L.S., Bhandari, S., Bhusan, R. and Singhvi, A.K. (2006). Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar desert, India. Quaternary Science Reviews 25, 2632–2650.CrossRefGoogle Scholar
  39. Laity J.E. and Malin M.C. (1985). Sapping processes and the development of theater-headed valley networks on the Colorado Plateau. Bulletin Geological Society of America 96, 203–217.CrossRefGoogle Scholar
  40. Lamb S., Hoke L., Kenna L. and Dewey J. (1997). Cenozoic evolution of the Central Andes in Bolivia and northern Chile. Geological Society of London Special Publication 121, 237–64.CrossRefGoogle Scholar
  41. Magilligan F.J. and Goldstein P.S. (2001). El Niño floods and culture change: a late Holocene flood history for the Rio Moquegua, southern Peru. Geology 29, 431–434.CrossRefGoogle Scholar
  42. Mainguet M. and Chemin M.C. (1986). Wind system and sand dunes in the Taklamakan Desert (People’s Republic of China). Paper Presented at the Twentieth International Symposium on Remote Sensing of Environment, Nairobi, Kenya, 827–833.Google Scholar
  43. McCarthy T.S., Stannistreat I.G., Cairncross B., Ellery W.N., Ellery K., Oelofse R. and Grobicki T.S.A. (1988). Incremental aggradation on the Okavango Delta-fan, Botswana. Geomorphology 1, 267–78.CrossRefGoogle Scholar
  44. Middleton N.J. (2001). Going to extremes; mud, sweat and frozen tears. London: Channel 4 books.Google Scholar
  45. Mishra D.C., Singh B., Tiwari V.M., Gupta S.B. and Rao M.B.S.V. (2000). Two cases of continental collisions and related tectonics during the Proterozonic period in India– insights from gravity modelling constrained by seismic and magnetotelluric studies. Precambrian Research 99, 149–169.CrossRefGoogle Scholar
  46. Molnar P., England P. and Martinod J. (1993). Mantle dynamics, uplift of the Tibetan Plateau and its margins. Review of Geophysics 31, 357–396.CrossRefGoogle Scholar
  47. Morrison R.B. (1991). Quaternary geology of the Southern Basin and Range province. In Vol. K-2. Quaternary Nonglacial Geology: Conterminous U.S. Boulder: Geological Society of America, pp.353–371.Google Scholar
  48. Nash D.J., Shaw P.A. and Thomas D.S.G. (1994). Duricrust development and valley evolution: Process landform links in the Kalahari. Earth Surface Processes and Landforms 19, 299–317.CrossRefGoogle Scholar
  49. Oberlander T.M. (1994). global deserts: a geomorphic comparison. In A.D.Abrhams and A.J. Parsons (eds.), Geomorphology of Desert Environments. London: Chapman and Hall, pp.13–35.Google Scholar
  50. Olivier J. (1995). Spatial distribution of fog in the Namib. Journal of Arid Environments 29, 129–38.CrossRefGoogle Scholar
  51. Pachur H.J. and Kröpelin S. (1987). Wadi Howar: Paleoclimatic evidence from an extinct river system in the southeastern Sahara. Science 237, 298–300.CrossRefGoogle Scholar
  52. Patton P.C., Biggar N., Condit C.D., Gillam M.L., Love D.W., Machette M.N., Mayer L., Morrison R.B. and Rosholt J.N. (1991). Quaternary geology of the Colorado Plateau. In Vol. K-2, Quaternary Nonglacial Geology: Conterminous U.S., Boulder: Geological Society of America, pp.363–406.Google Scholar
  53. Peterson F.F. (1981). Landforms of the Basin and Range Province defined for soil survey. Nevada Agricultural Experiment Station, Technical Bulletin 28, 52pp.Google Scholar
  54. Petrov, M.P. (1976). Deserts of the World. New York: Wiley.Google Scholar
  55. Pettke T., Halliday A.N., Hall, C.M. and Rea, D.K. (2000). Dust production and deposition in Asia and the north Pacific Ocean over the past 12 Myr. Earth and Planetary Science Letters 178, 397–413.CrossRefGoogle Scholar
  56. Placzek, C., Quade J. and Betancourt J.L. (2001). Holocene lake-level fluctuations of Lake Aricota, southern Peru. Quaternary Research 56, 181–190.CrossRefGoogle Scholar
  57. Qiang X.K., Li, Z.X., Powell C.McA. and Zheng H.B. (2001). Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters 187, 83–93.CrossRefGoogle Scholar
  58. Rauchy J.M., Servant, J.M., Fournier M. and Causse C. (1996). Extensive carbonate algal bioherms in upper Pleistocene saline lakes of the central Altiplano of Bolivia. Sedimentology 43, 973–993.CrossRefGoogle Scholar
  59. Rech J.A., Currie B.S., Michalski G. and Cowan, A.M. (2006). Neogene climate change and uplift of the Atacama Desert, Chile. Geology 34, 761–764.CrossRefGoogle Scholar
  60. Searl A. and Rankin S. (1993). A preliminary petrographic study of the Chilean nitrates. Geological Magazine 130, 319–333.CrossRefGoogle Scholar
  61. Senut B., Pickford M. and Ward J. (1994). Biostratigraphie de éolianites néogénes du sud de la Sperrgebeit (Désert de Namib, Namibie). Comptes Rendus de l’Academie des Sciences 318, 1001–7.Google Scholar
  62. Shaw A. and Goudie A.S. (2002). Geomorphological evidence for the extension of the mega-Kalahari into south-central Angola. South African Geographical Journal 84, 182–194.Google Scholar
  63. Shaw P.A., Thomas D.S.G. and Nash D.J. (1992). Late Quaternary fluvial activity in the dry valleys (megacha) of the Middle and Southern Kalahari, southern Africa. Journal of Quaternary Science 7, 273–281.CrossRefGoogle Scholar
  64. Shroder J.F. (1993). Himalaya to the Sea. London: Routledge.Google Scholar
  65. Singh G., Wasson R.J. and Agrawal D.P. (1990). Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwest India. Review of Palaeobotany and Palynology 64, 351–358.CrossRefGoogle Scholar
  66. Spate O.H.K. (1957). India and Pakistan: A General and Regional Geography (2nd edition). London: Methuen.Google Scholar
  67. Sperling C.H.B. and Goudie A.S. (1975). The miliolite of western India: a discussion of the aeolian and marine hypotheses. Sedimentary Geology 13, 71–5.CrossRefGoogle Scholar
  68. Tchakerian V.P. (1997) North America. In D.S.G. Thomas (ed.) Arid Zone Geomorphology: Process Form and Change in Drylands (2nd edition). Chichester: Wiley, pp.523–541.Google Scholar
  69. Tchakerian V.P. and Lancaster N. (2002). Late Quaternary arid/humid cycles in the Mojave Desert and Western Great Basin of North America. Quaternary Science Reviews 21, 799–810.CrossRefGoogle Scholar
  70. Thomas D.S.G. (1984). Ancient ergs of the former arid zones of Zimbabwe, Zambia and Angola. Transactions of the Institute of British Geographers NS 9, 75–88.CrossRefGoogle Scholar
  71. Thomas D.S.G. and Shaw P. (1991). The Kalahari Environment. Cambridge: Cambridge University Press.Google Scholar
  72. Tooth S. and Nanson G.C. (1999). Anabranching rivers on the Northern Plains of arid central Australia. Geomorphology 29, 211–233.CrossRefGoogle Scholar
  73. Twidale C.R. (2000). Early Mesozoic (?Triassic) landscapes in Australia: evidence, argument and implications. Journal of Geology 108, 537–552.CrossRefGoogle Scholar
  74. Wang J., Wang Y.J., Liu Z.C., Li J.Q. and Xi P. (1999). Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 37–47.CrossRefGoogle Scholar
  75. Ward J.D., Seely, M.K. and Lancaster N. (1983). On the antiquity of the Namib. South African Journal of Science 79, 175–183.Google Scholar
  76. Washington R., Todd, M., Middleton, N.J. and Goudie, A.S. (2003). Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals of the Association of American Geographers 93, 297–313.CrossRefGoogle Scholar
  77. Wasson R.J., Smith G.I. and Agrawal D.P. (1984). Late Quaternary sediments, minerals and inferred geochemical history of Didwana Lake, Thar Desert, India. Palaeogeography, Palaeoclimatology, Palaeoecology 46, 345–72.CrossRefGoogle Scholar
  78. Wasson R.J., Fitchett K., Mackey B. and Hyde R. (1988). Large-scale patterns of dune type, spacing and orientation in the Australian continental dunefield. Australian Geographer 19, 89–104.CrossRefGoogle Scholar
  79. Watts N.L. (1980). Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology 27, 661–86.CrossRefGoogle Scholar
  80. Wilhelmy H. (1969). Das Urstromtal am Ostrand der Indusbene und dar Sarasvati Problem. Zeitschrift für Geomorphologie Supplementband 8, 76–93.Google Scholar
  81. Zhang X.Y., Arimoto R., Zhu, G.H. and Zhang G.Y. (1998). Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus 50B, 317–330.Google Scholar
  82. Zhao S. and Xia X. (1984). Evolution of the Lop Desert and the Lop Nor. Geographical Journal 150, 311–21.CrossRefGoogle Scholar
  83. Zhu Z. (1984). Aeolian landforms in the Taklimakan Desert. In: F. El-Baz (ed.) Deserts and Arid Lands. The Hague: Nijhoff, pp.133–144.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrew S. Goudie
    • 1
  1. 1.School of GeographyOxford UniversityOxfordUK

Personalised recommendations